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a b s t r a c t

Double-quantitative decision-theoretic rough sets (Dq-DTRS) provide more comprehensive description
methods for rough approximations of concepts, which lay foundations for the development of attribute
reduction and rule extraction of rough sets. Existing researches on concept approximations of Dq-
DTRS pay more attention to the equivalence class of each object in approximating a concept, and
calculate concept approximations from the whole data set in a batch. This makes the calculation of
approximations time consuming in dynamic data sets. In this paper, we first analyze the variations
of equivalence classes, decision classes, conditional probability, internal grade and external grade in
dynamic data sets while objects vary sequentially or simultaneously over time. Then we propose
the updating mechanisms for the concept approximations of two types of Dq-DTRS models from
incremental perspective in dynamic decision information systems with the sequential and batch
variations of objects. Meanwhile, we design incremental sequential insertion, sequential deletion, batch
insertion, batch deletion algorithms for two Dq-DTRS models. Finally, we present experimental com-
parisons showing the feasibility and efficiency of the proposed incremental approaches in calculating
approximations and the stability of the incremental updating algorithms from the perspective of the
runtime under different inserting and deleting ratios and parameter values.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Rough set theory is an effective mathematical tool for study-
ing inaccurate and uncertain knowledge from information sys-
tems [1], which has been widely used in decision supporting,
cloud computing, machine learning and intelligent information
processing. In the contemporary era, uncertainties of data have
increased dramatically due to the increase of collection means
and the amount of data. As an effective uncertainty analysis tool,
rough set theory attracts great attention. At present, some re-
searchers are studying how to calculate concept approximations
quickly, because it is the indispensable cornerstone of knowledge
representation and feature selection in rough sets [2–4].

In classical Pawlak model, concept approximations mainly
consider the inclusion and intersection relationships between an
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approximated concept and basic knowledge generated by condi-
tional attributes in the universe. It is a qualitative model with
no fault tolerance capability. Considering the technical limita-
tions and other uncertainties in data collection, we find that
some actual data may have missing values and small fluctuations.
So this classical model has been popularized to make it fault-
tolerant, thus enhancing its applicability. Different quantitative
extension models of rough sets are proposed such as tolerance
rough sets [5], graded rough sets [6], variable precision rough
sets [7], probabilistic rough sets [8], decision-theoretic rough
sets (DTRS) [9,10] and fuzzy variable precision rough sets [11].
Moreover, the development and application of DTRS are remark-
able. Yang et al. [12] and [13] put forward sequential three-
way methods for multi-class decision and dynamic hybrid data
with the temporal–spatial composite variation, respectively. Fu-
jita et al. [14] first put forward the proposal of applying three-
way decisions to the resilience analysis of critical infrastruc-
tures. More noteworthy is that some composite models based
on DTRS with double fault tolerance capabilities are proposed,
which thoroughly describe the approximation space through the
double quantitative indicators with complementary relationship.
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Li et al. [15] constructed Dq-DTRS based on graded and decision-
theoretic rough set models. Yu et al. [16] established multi-
granulation Dq-DTRS models. Xu et al. [17] proposed generalized
multi-granulation Dq-DTRS models. Fan et al. [18] proposed logi-
cal double-quantitative rough fuzzy sets. Guo et al. [19] and [20]
proposed logical double-quantitative rough fuzzy sets and local
logical disjunction double-quantitative rough sets, respectively.

All of the above composite models study concept approxima-
tions under static decision information systems. However, the
object set, attribute set and attribute values of decision informa-
tion systems may vary individually or associatively over time in
sequences or in batches. How to comprehensively and efficiently
approximate concepts in dynamic decision information systems
is our focus. Incremental learning is an efficient technology of
dynamic data mining, which can acquire knowledge from current
data more quickly based on the prior knowledge from previ-
ous data and the correlation of real time data. It can be used
not only to process dynamic data such as dynamic multi-source
data [21], but also to process large data from the perspective of
updating data sequences [22,23]. Researchers study incremental
updating of rough sets from different aspects such as incre-
mental approximations [24], incremental decision rules [25] and
incremental feature selection [26,27]. This paper focuses on incre-
mental approximation updating in dynamic decision information
systems.

When the object set varies over time, Chen et al. [28] stud-
ied systematically the approximation updating mechanisms of
variable precision rough sets. Luo et al. [29] established the in-
cremental approximation updating mechanism of DTRS based on
matrix form. Liu et al. [30] studied the incremental updating
approach of interesting knowledge. Cheng [31] proposed dynamic
maintenance approaches of approximations for fuzzy rough sets.
Li et al. [32] proposed an incremental method for fast updating
approximations of dominance-based rough sets. Yu et al. [24]
and Luo et al. [33] analyzed profoundly the incremental updating
mechanisms of rough sets in interval-valued and set-valued sys-
tems, respectively. Liu et al. [34] and [35] proposed the incremen-
tal learning methods of knowledge discovery in incomplete in-
formation systems and business intelligent systems, respectively.
When the attribute set varies over time, Chan et al. [36] first
studied the incremental approximation updating of rough sets.
Liu et al. [37] studied systematically incremental approximation
updating of probabilistic rough sets. Some researchers have stud-
ied incremental approximation updating in set-valued ordered
decision systems [38], hierarchical multi-criteria decision sys-
tems [39] and interval-valued ordered information system [40].
When the attribute values varies over time, Chen et al. [41]
studied the incremental approximation updating mechanisms of
rough sets. Zeng et al. [42] proposed dynamically updating ap-
proximation approaches of fuzzy rough sets when coarsening or
refining the attribute values. Li et al. [43] and Hu et al. [44]
put forward the incremental approaches for dynamic mainte-
nance of approximations of dominance-based rough sets and
multi-granulation rough sets, respectively. Luo et al. [45] stud-
ied the updating mechanisms of three-way decisions in incom-
plete multi-scale information systems with the variation of scales.
In addition, some researchers study incremental approximations
with the simultaneous variation of the object set, attribute set and
attribute values. Wang et al. [46] presented the efficient incre-
mental approximation updating methods in ordered information
systems with the simultaneous variation of the object set and
attribute values. Yang et al. [47] proposed a unified framework
for the incremental updating of the probabilistic regions of DTRS
with multilevel variations of the object set, attribute set and
attribute values.

At present, there is little research on the dynamic maintenance
of approximations of composite models. In view of the large scale,

fast updating speed and the uncertainty of data, incremental ap-
proximation updating of composite models contribute to efficient
expression of knowledge and rules. This paper studies the in-
cremental approximation updating of a representative composite
model in dynamic decision information systems. Considering that
(1) Dynamic data sets with the variation of objects are ubiquitous,
such as credit card applications, spam classification, TV dramas
and movie recommendation systems etc.; (2) The computational
complexity of rough approximations is positively correlated with
the square of the number of objects, which makes the compu-
tation of approximations time-consuming or even infeasible in
large-scale dynamic data sets; (3) The static calculation method
of approximations takes up a large amount of storage and the
calculation speed is slow, so it cannot satisfy the requirements
of fast analysis and decision-making in the era of rapid data up-
dating; our research background is the dynamic decision system
with the variation of objects. Combining the reasonable semantic
interpretation for decision-making process and the completeness
of describing approximations of Dq-DTRS and the efficiency of
incremental learning, we study the incremental approximation
updating of Dq-DTRS in dynamic decision systems with the se-
quential and batch variations of objects, which can help to update
quickly the approximations and promote feature selection and
rule extraction of Dq-DTRS in dynamic and large-scale data sets.

The main contributions of this paper are as follows: (1) From
the perspective of incremental learning, we make full use of prior
knowledge to study dynamic approximation updating mecha-
nisms of the composite model Dq-DTRS. (2) Efficient incremental
sequential and batch algorithms for updating approximations of
two Dq-DTRS models are proposed in dynamic decision systems
with the insertion and deletion of objects in sequences or in
batches. (3) Considering the influence of different inserting and
deleting ratios and parameter values on the performance of in-
cremental algorithms, we analyzed the stability of incremental
algorithms. (4) The research of incremental approximations in
this paper provides a basis for the incremental feature selection
and rule extraction of composite models.

The rest of the paper is organized as follows. In Section 2, we
mainly reviewed some basic knowledge of decision information
systems and two Dq-DTRS models. In Section 3, we study sys-
tematically incremental approximation updating approaches of
two Dq-DTRS models in dynamic decision systems with the se-
quential and batch insertions of objects, respectively. In Section 4,
we explored deeply the incremental approximation updating ap-
proaches of Dq-DTRS models in dynamic decision systems with
the sequential and batch deletions of objects, respectively. In Sec-
tion 5, two static algorithms and eight incremental algorithms are
proposed to verify the feasibility and efficiency of the incremental
approximation updating approaches. In Section 6, experimental
results show the computational efficiency and stability of our
proposed incremental algorithms in calculating approximations.
Section 7 concludes the paper and elaborates future studies.

2. Preliminaries

We first introduce some basic concepts about decision infor-
mation systems and two types of Dq-DTRS models.

Let S = (U, A, V , f ) be a decision information system, where U
is the universe; A = C∪D is the union of conditional attribute set
C and decision attribute set D, and C ∩ D = ∅; V = ∪a∈AVa is the
attribute value domain; f : U×A→ V is an information function,
i.e., ∀a ∈ A, x ∈ U , that f (x, a) ∈ Va, where f (x, a) is the value
of the object x under attribute a. R is the equivalence relation
generated by C in the universe U . [x]R represents the equivalence
class of x with regard to R, where [x]R = {y ∈ U |f (y, a) =
f (x, a),∀a ∈ C}. U/C denotes the conditional partition consisting
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of equivalence classes generated by C in U and U/D denotes the
decision partition consisting of decision classes generated by D in
U . Symbol |·| denotes the cardinality of a set.

In Pawlak model, concepts are approximated by the upper and
the lower approximations which consist of equivalence classes
completely and possibly contained in concepts, respectively.
Some scholars quantify the relationships between concepts and
equivalence classes, then propose quantitative extension models.
Yao [5] proposed decision-theoretic rough sets (DTRS) based on
the relative quantitative information described by conditional
probability and minimum Bayesian decision risk. For any concept
X (X ⊆ U), in the DTRS model, the upper approximation is
R(α,β)(X) = ∪{[x]R | P(X |[x]R) > β, x ∈ U} and the lower
approximation is R(α,β)(X) = ∪{[x]R | P(X |[x]R) ≥ α, x ∈ U}.

The basic idea of DTRS is to approximate concepts by equiv-
alence classes with conditional probability in acceptable fault
tolerance thresholds, where thresholds α and β are determined
based on the minimum Bayesian decision risk and the loss func-
tion given by experts. Any object has two states with respect to
a target concept. In each state, this object can be divided into
positive, boundary and negative regions, which correspond to ac-
ceptance, non-commitment and rejection decisions, respectively.
Let aP , aB and aN denote the actions of classifying objects into pos-
itive region, boundary region and negative region, respectively.
The six parameters of the loss function are briefly introduced.
Let λPP , λBP and λNP denote the losses caused by taking actions
aP , aB and aN , respectively, when an object belongs to X; and
λPN , λBN and λNN denote the losses incurred for taking the same
actions when the object does not belong to X . This paper mainly
studies the general case, namely β < α, which can produce
three rough regions and the corresponding three-way decisions.
So the loss function concerned satisfies the two basic conditions
λPP ≤ λBP < λNP , λNN ≤ λBN < λPN and (λNP − λBP )(λPN − λBN ) ≥
(λBP − λPP )(λBN − λNN ). The values of threshold parameters are
α =

λPN−λBN
(λPN−λBN )+(λBP−λPP )

and β =
λBN−λNN

(λBN−λNN )+(λNP−λBP )
.

Considering that the relative quantitative information ignores
the information differences of different equivalence classes con-
taining the target concept to some extent, Li et al. [8] further pro-
posed two types of double-quantitative decision-theoretic rough
sets (Dq-DTRS) by cross-using relative and absolute quantitative
information to characterize concepts in the upper and lower
approximations.

In the first type of double-quantitative decision-theoretic
rough set model (DqI-DTRS), the upper and lower approximations
of any concept X (X ⊆ U) are

R
I
(α,β)(X) = ∪{[x]R | P(X |[x]R) > β, x ∈ U} (2.1)

RI
k(X) = ∪{[x]R | g([x]R, X) ≤ k, x ∈ U} (2.2)

where 0 ≤ k ≤ |U | and 0 ≤ β =
λBN−λNN

(λBN−λNN )+(λNP−λBP )
≤ 1.

P(X |[x]R), called conditional probability [5,8], refers to the relative
number of the elements belonging to X in equivalence class [x]R,
which can be calculated by P(X |[x]R) =

|[x]R∩X |
|[x]R|

. g([x]R, X), called
external grade [16], refers to the absolute number of the elements
belonging to [x]R outside concept X , which can be calculated
by g([x]R, X) = |[x]R| − |[x]R ∩ X |. In the DqI-DTRS, the upper
approximation of X is the union of equivalence classes whose
conditional probability about X is greater than β and the lower
approximation of X is the union of equivalence classes whose
external grade about X is less than or equal to k. The positive,
negative, upper boundary, lower boundary and boundary regions
of X in the DqI-DTRS model are posI (X) = R

I
(α,β)(X) ∩ RI

k(X);

neg I (X) = (R
I
(α,β)(X) ∪ RI

k(X))
C
; UbnI (X) = R

I
(α,β)(X) − RI

k(X);

LbnI (X) = RI
k(X) − R

I
(α,β)(X); bn

I (X) = UbnI (X) ∪ LbnI (X). Based

Table 1
The representations of related concepts with the variation of objects.
Time t t + 1

System S = (U, A, V , f ) S
′

= (U
′

, A, V
′

, f
′

)
Universe U U

′

Decision classes D1,D2, . . . ,Dn D
′

1,D
′

2, . . . ,D
′

n′

Equivalence classes E1, E2, . . . , Em E
′

1, E
′

2, . . . , E
′

m′

on the positive, negative and boundary regions, we can obtain
the acceptance, rejection and non-commitment decision rules,
respectively.

In the second type of double-quantitative decision-theoretic
rough set model (DqII-DTRS), the upper and lower approxima-
tions of X are

R
II
k (X) = ∪{[x]R | g([x]R, X) > k, x ∈ U} (2.3)

RII
(α,β)(X) = ∪{[x]R | P(X |[x]R) ≥ α, x ∈ U} (2.4)

where 0 ≤ k ≤ |U | and 0 ≤ β < α =
λPN−λBN

(λPN−λBN )+(λBP−λPP )
≤

1. g([x]R, X), called internal grade [16], refers to the absolute
number of elements belonging to [x]R inside X , which can be
calculated by g([x]R, X) = |[x]R ∩ X |. In the DqII-DTRS, the upper
approximation of X is the union of equivalence classes whose
internal grade about X is greater than k and the lower approxi-
mation of X is the union of equivalence classes whose conditional
probability about X is greater than or equal to α. Similar to
the DqI-DTRS model, the rough regions and the corresponding
decision rules of X in the DqII-DTRS can be obtained based on
R
II
k (X) and RII

(α,β)(X).

3. Incremental approximation updating of Dq-DTRS with the
sequential and batch insertion of objects

Concept approximations are the indispensable knowledge for
feature selection and rule extraction of the Dq-DTRS models. This
paper focuses on how to quickly obtain the approximations of
DqI-DTRS and DqII-DTRS in dynamic decision information sys-
tems with the insertion and deletion of objects in sequences or
in batches over time. We study the dynamic changes of objects
from time t to time t+1. The basic information about the relevant
concepts with the variation of objects at two moments is shown
in Table 1.

In this section, we propose methods for updating the concept
approximations of DqI-DTRS and DqII-DTRS when new objects are
inserted sequentially or simultaneously over time.

Firstly, we study the updating methods when many objects are
inserted sequentially at time t+1. Considering that the sequential
approximation updating of many objects is the cumulative result
of the updating one object after another, we mainly present the
updating process of DqI-DTRS and DqII-DTRS when a new object
x+ is inserted. Then the approximation updating of many objects
in the case of sequential insertion is realized by iteration loop.

The insertion of a new object will affect the granular structures
of the previous conditional attribute set and decision attribute set,
and then cause the variations of conditional probability, external
grade and internal grade. Let P = (pij)n∗m, E = (eij)n∗m and
I = (iij)n∗m be the conditional probability matrix, external grade
matrix and internal grade matrix of time t , respectively; P ′ =
(p′ij)n′∗m′ , E

′
= (e′ij)n′∗m′ and I ′ = (i′ij)n′∗m′ be the corresponding

matrices of time t + 1. It should be pointed out that pij =
P(Di|Ej), eij = g(Ej,Di), iij = g(Ej,Di), p′ij = P(D′i|E

′

j ), e
′

ij =

g(E ′j ,D
′

i) and i′ij = g(E ′j ,D
′

i). Detailed variations of decision classes,
equivalence classes, conditional probability, external grade and
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internal grade with the insertion of a new object are shown in the
following lemma, where the other decision classes, equivalence
classes, conditional probability, external grade and internal grade
remain unchanged except that mentioned in the conclusions.

Lemma 3.1. When x+ is inserted at time t+1, we have the following
conclusions:

(1) If D′i = Di ∪ {x+} (i ∈ {1, 2, . . . , n}) and E ′j = Ej ∪ {x+}
(j ∈ {1, 2, . . . ,m}), there are
p′1j < p1j, p′2j < p2j, . . . , p′i−1,j < pi−1,j, p′ij > pij, p′i+1,j <

pi+1,j, . . . , p′nj < pnj;
e′1j > e1j, e′2j > e2j, . . . , e′i−1,j > ei−1,j, e′i+1,j > ei+1,j, . . . , e′nj
> enj;
i′ij > iij.

(2) If D′i = Di ∪ {x+} (i ∈ {1, 2, . . . , n}) and E ′m′ = E ′m+1 = {x
+
},

there are
p′1,m+1 = p′2,m+1 = · · · = p′i−1,m+1 = 0, p′i,m+1 =
1, p′i+1,m+1 = p′i+2,m+1 = · · · = p′n,m+1 = 0;
e′1,m+1 = e′2,m+1 = · · · = e′i−1,m+1 = 1, e′i,m+1 =
0, e′i+1,m+1 = e′i+2,m+1 = · · · = e′n,m+1 = 1;
i′1,m+1 = i′2,m+1 = · · · = i′i−1,m+1 = 0, i′i,m+1 = 1, i′i+1,m+1 =
i′i+2,m+1 = · · · = i′n,m+1 = 0.

(3) If D′n′ = D′n+1 = {x
+
} and E ′j = Ej ∪ {x+} (j ∈ {1, 2, . . . ,m}),

there are
p′n+1,1 = p′n+1,2 = · · · = p′n+1,j−1 = 0, p′n+1,j =

1
|Ej|+1

, p′n+1,j+1 = p′n+1,j+2 = · · · = p′n+1,m = 0,

p′1j < p1j, p′2j < p2j, . . . , p′nj < pnj;
e′1j > e1j, e′2j > e2j, . . . , e′nj > enj, e′n+1,1 = |E1|, e

′

n+1,2 =

|E2|, . . . , e′n+1,m = |Em|;
i′n+1,1 = 0, i′n+1,2 = 0, . . . , i′n+1,j−1 = 0, i′n+1,j = 1, i′n+1,j+1
= 0, . . . , i′n+1,m = 0.

(4) If D′n′ = D′n+1 = {x
+
} and E ′m′ = E ′m+1 = {x

+
}, there are

p′n+1,1 = p′n+1,2 = · · · = p′n+1,m = 0, p′n+1,m+1 =
1, p′1,m+1 = p′2,m+1 = · · · = p′n,m+1 = 0;
e′n+1,1 = |E1|, e

′

n+1,2 = |E2|, . . . , e
′

n+1,m = |Em|, e
′

n+1,m+1 =

0, e′1,m+1 = e′2,m+1 = · · · = e′n,m+1 = 1;
i′n+1,1 = i′n+1,2 = · · · = i′n+1,m = 0, i′n+1,m+1 = 1, i′1,m+1 =
i′2,m+1 = · · · = i′n,m+1 = 0.

Proof. By D′i = Di ∪ {x+} and E ′j = Ej ∪ {x+}, there are |E ′j | =
|Ej| + 1, |D′1 ∩ E ′j | = |D1 ∩ Ej|, · · · , |D′i−1 ∩ E ′j | = |Di−1 ∩ Ej|,
|D′i ∩ E ′j | = |Di ∩ Ej| + 1, |D′i+1 ∩ E ′j | = |Di+1 ∩ Ej|, · · · , |D′n ∩ E ′j | =
|Dn ∩ Ej|. According to the definitions of the conditional proba-
bility, external grade and internal grade, the conclusions of case
(1) are obvious. Other conclusions of cases (2), (3) and (4) can be
obtained similarly. □

In the following, we give more intuitive results of the varia-
tions of conditional probability, external grade and internal grade
at time t + 1.

P
′

(1) =

⎛⎜⎜⎜⎝
p11 · · · p1,j−1 < p1j p1,j+1 · · · p1m
· · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 < pi−1,j pi−1,j+1 · · · pi−1,m
pi1 · · · pi,j−1 > pij pi,j+1 · · · pim
pi+1,1 · · · pi+1,j−1 < pi+1j pi+1,j+1 · · · pi+1,m
· · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 < pnj pn,j+1 · · · pnm

⎞⎟⎟⎟⎠

P
′

(2) =

⎛⎜⎜⎜⎝
p11 · · · p1,j−1 p1j p1,j+1 · · · p1m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 pi−1,j pi−1,j+1 · · · pi−1,m 0
pi1 · · · pi,j−1 pij pi,j+1 · · · pim 1
pi+1,1 · · · pi+1,j−1 pi+1,j pi+1,j+1 · · · pi+1,m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 pnj pn,j+1 · · · pnm 0

⎞⎟⎟⎟⎠

E
′

(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e11 · · · e1,j−1 > eg1j e1,j+1 · · · e1m
· · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 > ei−1,j ei−1,j+1 · · · ei−1,m
ei1 · · · ei,j−1 eij ei,j+1 · · · eim
ei+1,1 · · · ei+1,j−1 > ei+1j ei+1,j+1 · · · ei+1,m
· · · · · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 > enj en,j+1 · · · enm

⎞⎟⎟⎟⎟⎟⎟⎟⎠

E
′

(2) =

⎛⎜⎜⎜⎜⎝
e11 · · · e1,j−1 e1j e1,j+1 · · · e1m 1
· · · · · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 ei−1,j ei−1,j+1 · · · ei−1,m 1
ei1 · · · ei,j−1 eij ei,j+1 · · · eim 0
ei+1,1 · · · ei+1,j−1 ei+1,j ei+1,j+1 · · · ei+1,m 1
· · · · · · · · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 enj en,j+1 · · · enm 1

⎞⎟⎟⎟⎟⎠

I
′

(1) =

⎛⎜⎜⎜⎜⎜⎜⎝

i11 · · · i1,j−1 i1j i1,j+1 · · · i1m
· · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 ii−1,j ii−1,j+1 · · · ii−1,m
ii1 · · · ii,j−1 > iij ii,j+1 · · · iim
ii+1,1 · · · ii+1,j−1 ii+1,j ii+1,j+1 · · · ii+1,m
· · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 inj in,j+1 · · · inm

⎞⎟⎟⎟⎟⎟⎟⎠

I
′

(2) =

⎛⎜⎜⎜⎝
i11 · · · i1,j−1 i1j i1,j+1 · · · i1m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 ii−1,j ii−1,j+1 · · · ii−1,m 0
ii1 · · · ii,j−1 iij ii,j+1 · · · iim 1
ii+1,1 · · · ii+1,j−1 ii+1,j ii+1,j+1 · · · ii+1,m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 inj in,j+1 · · · inm 0

⎞⎟⎟⎟⎠

P
′

(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 · · · p1,j−1 < p1j p1,j+1 · · · p1m
· · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 < pi−1,j pi−1,j+1 · · · pi−1,m
pi1 · · · pi,j−1 < pij pi,j+1 · · · pim
pi+1,1 · · · pi+1,j−1 < pi+1,j pi+1,j+1 · · · pi+1,m
· · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 < pnj pn,j+1 · · · pnm
0 · · · 0 1

|Ej|+1
0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P
′

(4) =

⎛⎜⎜⎜⎜⎜⎜⎝

p11 · · · p1,j−1 p1j p1,j+1 · · · p1m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 pi−1,j pi−1,j+1 · · · pi−1,m 0
pi1 · · · pi,j−1 pij pi,j+1 · · · pim 0
pi+1,1 · · · pi+1,j−1 pi+1,j pi+1,j+1 · · · pi+1,m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 pnj pn,j+1 · · · pnm 0
0 · · · 0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

E
′

(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e11 · · · e1,j−1 > eg1j e1,j+1 · · · e1m
· · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 > egi−1,j ei−1,j+1 · · · ei−1,m
ei1 · · · ei,j−1 > egij ei,j+1 · · · eim
ei+1,1 · · · ei+1,j−1 > egi+1,j ei+1,j+1 · · · ei+1,m
· · · · · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 > egnj en,j+1 · · · enm
|E1| · · · |Ej−1| |Ej| |Ej+1| · · · |Em|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E
′

(4) =

⎛⎜⎜⎜⎜⎜⎜⎝

e11 · · · e1,j−1 e1j e1,j+1 · · · e1m 1
· · · · · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 ei−1,j ei−1,j+1 · · · ei−1,m 1
ei1 · · · ei,j−1 eij ei,j+1 · · · eim 1
ei+1,1 · · · ei+1,j−1 ei+1,j ei+1,j+1 · · · ei+1,m 1
· · · · · · · · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 enj en,j+1 · · · enm 1
|E1| · · · |Ej−1| |Ej| |Ej+1| · · · |Em| 0

⎞⎟⎟⎟⎟⎟⎟⎠

I
′

(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

i11 · · · i1,j−1 i1j i1,j+1 · · · i1m
· · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 ii−1,j ii−1,j+1 · · · ii−1,m
ii1 · · · ii,j−1 iij ii,j+1 · · · iim
ii+1,1 · · · ii+1,j−1 ii+1,j ii+1,j+1 · · · ii+1,m
· · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 inj in,j+1 · · · inm
0 · · · 0 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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I
′

(4) =

⎛⎜⎜⎜⎜⎜⎝
i11 · · · i1,j−1 i1j i1,j+1 · · · i1m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 ii−1,j ii−1,j+1 · · · ii−1,m 0
ii1 · · · ii,j−1 iij ii,j+1 · · · iim 0
ii+1,1 · · · ii+1,j−1 ii+1,j ii+1,j+1 · · · ii+1,m 0
· · · · · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 inj in,j+1 · · · inm 0
0 · · · 0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎠
From the above P ′(1)−(4), E

′

(1)−(4), I
′

(1)−(4), we can see the infor-
mation association and the change between time t and t + 1.
In the P ′(1)−(4), E

′

(1)−(4), I
′

(1)−(4), the information on the right or the
bottom of the dotted line of the matrix is new probability or
grade information. In cases (1)–(4), when updating the upper and
lower approximations of original decision classes, we are mainly
concerned with the information of the jth or (m + 1)th column
of P ′(1)−(4), E

′

(1)−(4), I
′

(1)−(4). In cases (3)–(4), when calculating the
approximations of a new decision class, we can only recalculate
them according to formulas (2.1)–(2.4) because there is no prior
knowledge.

3.1. The updating mechanisms for the concept approximations of
DqI-DTRS with the insertion of a new object

We first propose the updating mechanisms for the approxima-
tions of DqI-DTRS when a new object x+ is inserted at time t+1.
For any decision class Di (Di ⊆ U), we present the update process
of the approximations of D′i .

Case 1: The new object belongs to one original decision class,
namely ∃xi ∈ U , ∀d ∈ D, s.t. f (xi, d) = f (x+, d).

Proposition 3.1.1. When |[x+]R| = 1, for the upper and lower
approximations of D′i , we have the following properties:

(1) x+ /∈ D′i , R
I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(2) x+ /∈ D′i , if k > 0, then RI
k(D
′

i) = RI
k(Di) ∪ {x+}; otherwise,

RI
k(D
′

i) = RI
k(Di).

(3) x+ ∈ D′i , R
I
(α,β)(D

′

i) = R
I
(α,β)(Di)∪{x+}, RI

k(D
′

i) = RI
k(Di)∪{x+}.

Proof. (1) From |[x+]R| = 1 and x+ /∈ D′i , there are [x+]R = {x+}
and D′i = Di. By P(D′i|[x

+
]R) = 0, we have x+ /∈ R

I
(α,β)(D

′

i). So the

conclusion R
I
(α,β)(D

′

i) = R
I
(α,β)(Di) is true.

(2) According to [x+]R = {x+} and D′i = Di, there is g([x+]R,
D′i) = 1. If k > 0, then x+ ∈ g([x+]R,D′i). So RI

k(D
′

i) = RI
k(Di)∪{x+}.

If k = 0, x+ /∈ g([x+]R,D′i). Therefore, R
I
k(D
′

i) = RI
k(Di).

(3) From |[x+]R| = 1 and x+ ∈ D′i , there are [x+]R = {x+}
and D′i = Di ∪ {x+}. By P(D′i|[x

+
]R) = 1 and g([x+]R,D′i) = 0, we

can get x+ ∈ R
I
(α,β)(D

′

i) and x+ ∈ RI
k(D
′

i). Therefore, R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ {x+} and RI

k(D
′

i) = RI
k(Di) ∪ {x+}.

Thus, Proposition 3.1.1 is proved. □

According to Proposition 3.1.1, when the equivalence class of
the new object is a singleton set, there are (1) The upper and
lower approximations of the decision class to which the new
object belongs can be updated directly; (2) The lower approxima-
tions of those decision classes to which the new object does not
belong also need to be updated as long as the grade parameter k
is greater than 0.

When the equivalence class [x+]R is not a singleton set, we
suppose that x+ belongs to one original equivalence class Ej. At
time t + 1, this equivalence class Ej becomes E ′j , where E ′j =
Ej ∪ {x+}.

Proposition 3.1.2. When |[x+]R| > 1, x+ ∈ Ej, if x+ ∈ D′i , the
following properties for R

I
(α,β)(D

′

i) and RI
k(D
′

i) hold.

(1) When Ej ⊆ R
I
(α,β)(Di), there is R

I
(α,β)(D

′

i) = R
I
(α,β)(Di) ∪ {x+}.

(2) When Ej ̸⊂ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ E ′j ; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(3) When Ej ⊆ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di) ∪ {x+}.

(4) When Ej ̸⊂ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di).

Proof. By |[x+]R| > 1, x+ ∈ Ej and x+ ∈ D′i , there are E ′j = Ej∪{x+}
and D′i = Di ∪ {x+}.

(1) When Ej ⊆ R
I
(α,β)(Di), there is P(Di|Ej) > β . By P(D′i|E

′

j ) =
|E′j∩D

′
i |

|E′j |
=
|Ej∩Di|+1
|Ej|+1

> P(Di|Ej), there is E ′j ⊆ R
I
(α,β)(D

′

i). It is true that

R
I
(α,β)(D

′

i) = R
I
(α,β)(Di) ∪ {x+}.

(2) When Ej ̸⊂ R
I
(α,β)(Di), there is P(Di|Ej) ≤ β . By P(D′i|E

′

j ) >

P(Di|Ej), if P(E ′j ,D
′

i) > β , we obtain E ′j ⊆ R
I
(α,β)(D

′

i). So R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ E ′j . If P(E ′j ,D

′

i) ≤ β , then E ′j ̸⊂ R
I
(α,β)(Di). Therefore,

R
I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(3) When Ej ⊆ RI
k(Di), we can get g(Ej,Di) ≤ k. By g(E ′j ,D

′

i) =
|E ′j |−|E

′

j ∩ D′i|= |Ej|−|Ej ∩ Di|= g(Ej,Di), there is E ′j ⊆ RI
k(D
′

i).
Therefore, RI

k(D
′

i) = RI
k(Di) ∪ {x+}

(4) By Ej ̸⊂ RI
k(Di) and g(Ej,Di) = g(E ′j ,D

′

i), it is true that
RI
k(D
′

i) = RI
k(Di).

Thus, the proof of Proposition 3.1.2 is finished. □

According to Proposition 3.1.2, when the equivalence class
of the new object is not a singleton set and this new object
belongs to one original decision class, there are (1) When the
equivalence class to which this new object belongs is contained
in the upper (lower) approximation of the original decision class,
the upper (lower) approximation of the corresponding current
decision class can be updated directly; (2) When the equivalence
class is not contained in the upper approximation of the original
decision class, the upper approximation of the corresponding
current decision class needs to be updated as long as the current
conditional probability is greater than β .

Proposition 3.1.3. When |[x+]R| > 1, x+ ∈ Ej, if x+ /∈ D′i , the
following properties for R

I
(α,β)(D

′

i) and RI
k(D
′

i) hold.

(1) When Ej ⊆ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ {x+}; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di)− Ej.

(2) When Ej ̸⊂ R
I
(α,β)(Di), there is R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(3) When Ej ⊆ RI
k(Di), if g(E ′j ,D

′

i) ≤ k, then RI
k(D
′

i) = RI
k(Di) ∪

{x+}; otherwise, RI
k(D
′

i) = RI
k(Di)− Ej.

(4) When Ej ̸⊂ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di).

Proof. By |[x+]R| > 1, x+ ∈ Ej and x+ /∈ D′i , there are E ′j = Ej∪{x+}
and D′i = Di. We further get two conclusions: P(D′i|E

′

j ) =
|Ej∩Di|

|Ej|+1
<

P(Di|Ej) and g(E ′j ,D
′

i) = |Ej|−|Ej ∩ Di|+1 > g(Ej,Di).

(1) When Ej ⊆ R
I
(α,β)(Di), if P(E ′j ,D

′

i) > β , then E ′j ⊆ R
I
(α,β)(D

′

i).

So R
I
(α,β)(D

′

i) = R
I
(α,β)(Di) ∪ E ′j = R

I
(α,β)(Di) ∪ {x+}. On the contrary,

E ′j ̸⊂ R
I
(α,β)(D

′

i) is true. By Ei ⊆ R
I
(α,β)(Di) and E ′j ̸⊂ R

I
(α,β)(D

′

i), we

can get R
I
(α,β)(D

′

i) = R
I
(α,β)(Di)− Ej.

(2) By Ej ̸⊂ R
I
(α,β)(Di) and P(D′i|E

′

j ) < P(Di|Ej), we obtain

E ′j ̸⊂ R
I
(α,β)(D

′

i). Therefore, R
I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(3) By Ej ⊆ RI
k(Di) and g(E ′j ,D

′

i) ≤ k, we can get E ′j ⊆ RI
k(D
′

i). So
RI
k(D
′

i) = RI
k(Di)∪ E ′j = RI

k(Di)∪ {x+}. On the contrary, E ′j ̸⊂ RI
k(D
′

i).
By Ej ⊆ RI

k(Di), it is true that RI
k(D
′

i) = RI
k(Di)− E ′j = RI

k(Di)− Ej.
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Table 2
A decision information system of time t .
U a1 a2 a3 a4 d

x1 1 0 1 1 0
x2 1 1 1 1 0
x3 1 0 1 1 1
x4 0 1 0 1 1
x5 1 1 1 0 1
x6 1 0 1 1 0
x7 1 1 1 1 0
x8 1 1 1 0 1

Table 3
The system with the insertion of an object.
U a1 a2 a3 a4 d

x1 1 0 1 1 0
x2 1 1 1 1 0
x3 1 0 1 1 1
x4 0 1 0 1 1
x5 1 1 1 0 1
x6 1 0 1 1 0
x7 1 1 1 1 0
x8 1 1 1 0 1

x9 1 1 1 0 0

(4) According to Ej ̸⊂ RI
k(Di) and g(E ′j ,D

′

i) > g(Ej,Di), there is
E ′j ̸⊂ RI

k(D
′

i). Therefore, R
I
k(D
′

i) = RI
k(Di). □

From Proposition 3.1.3, when the equivalence class of the new
object is not a singleton set and this new object does not belong
to one original decision class, the upper (lower) approximation
of the corresponding current decision class needs to be updated
only when the equivalence class is contained in the upper (lower)
approximation of the original decision class.

By deeply analyzing the relationships among Propositions 3.1.1
–3.1.3, we find that Proposition 3.1.1 is a special case of Proposi-
tions 3.1.2–3.1.3. In the following discussions, no more attention
is paid to whether the equivalence class of a new object is a
singleton set.

Case 2: A new decision class appears at time t + 1, namely D+ =
{x+}.

Proposition 3.1.4. For x+, if ∀xi ∈ U, ∃d ∈ D, s.t. f (xi, d) ̸= f (x+, d),
there are

(1) If P(D+|[x+]R) > β , then R
I
(α,β)(D

+) = [x+]R; otherwise,

R
I
(α,β)(D

+) = ∅.
(2) For j ∈ {1, 2, . . . ,m′}, if g(E ′j ,D

+) ≤ k, then RI
k(D
+) = ∪{E ′j }.

Proof. According to the definition of lower and upper approxi-
mations of DqI-DTRS (formulas (2.1) and (2.2)), the above con-
clusions are obvious.

Example 1. A decision information system S = (U, A = C ∪
D, V , f ) at time t is shown in Table 2, where the universe U =
{x1, x2, x3, x4, x5, x6, x7, x8}, the conditional attribute set C =
{a1, a2, a3, a4} and the decision attribute set D = {d}. At time t+1,
a new object x9 is inserted and its detailed information is shown
in Table 3. We elaborate on the incremental approximation up-
dating mechanisms of DqI-DTRS with the insertion of an object,
where β = 1

3 and k = 1.

At time t , we know that U/D = {D1 = {x1, x2, x6, x7},D2 =

{x3, x4, x5, x8}} and U/C = {E1 = {x1, x3, x6}, E2 = {x2, x7}, E3 =

{x4}, E4 = {x5, x8}} from Table 2. Moreover, there are

P(D1|E1) =
2
3
, P(D1|E2) = 1, P(D1|E3) = 0, P(D1|E4) = 0,

P(D2|E1) =
1
3
, P(D2|E2) = 0, P(D2|E3) = 1, P(D2|E4) = 1;

g(E1,D1) = 1, g(E2,D1) = 0, g(E3,D1) = 1, g(E4,D1) = 2,

g(E1,D2) = 2, g(E2,D2) = 2, g(E3,D2) = 0, g(E4,D2) = 0.

According to formulas (2.1) and (2.2), there are R
I
(α,β)(D1) = E1 ∪

E2, RI
k(D1) = E1 ∪ E2 ∪ E3, R

I
(α,β)(D2) = E3 ∪ E4, RI

k(D2) = E3 ∪ E4.
At time t+1, we know that D′1 = D1∪{x9} = {x1, x2, x6, x7, x9},

D′2 = D2 = {x3, x4, x5, x8} and E ′1 = E1, E ′2 = E2, E ′3 = E3, E ′4 =
E4 ∪ {x9} = {x5, x8, x9} from Table 3.

By x9 ∈ E4 and x9 ∈ D′1, we calculate the approximations
of D′1 according to Proposition 3.1.2. Because E4 ̸⊂ R

I
(α,β)(D1)

and P(D′1|E
′

4) =
1
3 ̸> β , there is R

I
(α,β)(D

′

1) = R
I
(α,β)(D1) by the

conclusion (2) of Proposition 3.1.2. Because E4 ̸⊂ RI
k(D1), there is

RI
k(D
′

1) = RI
k(D1) by the conclusion (4) of Proposition 3.1.2.

By x9 ∈ E4 and x9 /∈ D′2, we get the approximations of
D′2 according to Proposition 3.1.3. Because E4 ⊂ R

I
(α,β)(D2) and

P(D′2|E
′

4) =
2
3 > β , there is R

I
(α,β)(D

′

2) = R
I
(α,β)(D2) ∪ {x9} by

the conclusion (1) of Proposition 3.1.3. Because E4 ⊂ RI
k(D2) and

g(E ′4,D
′

2) = 1 ≤ k, there is RI
k(D
′

2) = RI
k(D2) ∪ {x9} by the

conclusion (3) of Proposition 3.1.3.

3.2. The updating mechanisms for the concept approximations of
DqII-DTRS with the insertion of a new object

In the following, we study the updating mechanisms of the
upper and lower approximations of DqII-DTRS when a new object
x+ is inserted at time t + 1.

Case 1: The new object belongs to one original decision class,
namely ∃xi ∈ U , ∀d ∈ D, s.t. f (xi, d) = f (x+, d).

Based on the previous research experience of Section 3.1, we
directly assume that x+ belongs to one equivalence class Ej of the
decision information S. At time t + 1, the equivalence class Ej
becomes E ′j , where E ′j = Ej ∪ {x+}.

Proposition 3.2.1. Let x+ ∈ Ej, if x+ ∈ D′i , the following properties
for R

II
k (D
′

i) and RII
(α,β)(D

′

i) hold.

(1) When Ej ⊆ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di) ∪ {x+}.

(2) When Ej ̸⊂ R
II
k (Di), if g(E ′j ,D

′

i) > k, then R
II
k (D
′

i) = R
II
k (Di)∪E ′j ;

otherwise, R
II
k (D
′

i) = R
II
k (Di).

(3) When Ej ⊆ RII
(α,β)(Di), there is RII

(α,β)(D
′

i) = RII
(α,β)(Di) ∪ {x+}.

(4) When Ej ̸⊂ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ E ′j ; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di).

Proof. By E ′j = Ej ∪ {x+} and D′i = Di ∪ {x+}, we can get
g(E ′j ,D

′

i) > g(Ej,Di) and P(D′i|E
′

j ) > P(Di|Ej).

(1) When Ej ⊆ R
II
k (Di), there is g(Ej,Di) > k. By g(E ′j ,D

′

i) >

g(Ej,Di) > k, we can get E ′j ⊆ R
II
k (D
′

i). Therefore, R
II
k (D
′

i) =

R
II
k (Di) ∪ {x+}.
(2) According to Ej ̸⊂ R

II
k (Di) and g(E ′j ,D

′

i) > k, we can get E ′j ⊆

R
II
k (D
′

i) and R
II
k (D
′

i) = R
II
k (Di) ∪ E ′j . In another case, by Ej ̸⊂ R

II
k (Di)

and E ′j ̸⊂ R
II
k (D
′

i), we can obtain R
II
k (D
′

i) = R
II
k (Di).
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(3) When Ej ⊆ RII
(α,β)(Di), there is P(Di|Ej) ≥ α. By P(D′i|E

′

j ) >

P(Di|Ej), so we can get E ′j ⊆ RII
(α,β)(D

′

i) and RII
(α,β)(D

′

i) = RII
(α,β)(Di)∪

{x+}.
(4) When Ej ̸⊂ RII

(α,β)(Di), if P(D′i|E
′

j ) ≥ α, there is E ′j ⊆
RII
(α,β)(D

′

i). Therefore, R
II
(α,β)(D

′

i) = RII
(α,β)(Di) ∪ E ′j . On the contrary,

by Ej ̸⊂ R
II
k (Di) and E ′j ̸⊂ R

II
k (D
′

i), we get RII
(α,β)(D

′

i) = RII
(α,β)(Di). □

From Proposition 3.2.1, we first consider a prerequisite,
namely the new object belongs to one original decision class.
When the original equivalence class to which this new object
belongs is contained in the upper (lower) approximation of the
original decision class, the upper (lower) approximation of the
corresponding current decision class can be updated directly.
When this original equivalence class is not contained in the
upper (lower) approximation of the original decision class, we
need to further determine whether the current internal grade
(conditional probability) meets the threshold requirement. Then
we decide whether to update the upper (lower) approximation.

Proposition 3.2.2. Let x+ ∈ Ej, if x+ /∈ D′i , the following properties
for R

II
k (D
′

i) and RII
(α,β)(D

′

i) hold.

(1) When Ej ⊆ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di) ∪ {x+}.

(2) When Ej ̸⊂ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di).

(3) When Ej ⊆ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ {x+}; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di)− Ej.

(4) When Ej ̸⊂ RII
(α,β)(Di), there is RII

(α,β)(D
′

i) = RII
(α,β)(Di).

Proof. By E ′j = Ej ∪ {x+} and D′i = Di, we can get g(E ′j ,D
′

i) =

g(Ej,Di) and P(D′i|E
′

j ) < P(Di|Ej). The conclusions about R
II
k (D
′

i)
and RII

(α,β)(D
′

i) can be obtained by formulas (2.3) and (2.4) and
two expressions g(E ′j ,D

′

i) = g(Ej,Di) and P(D′i|E
′

j ) < P(Di|Ej). This
proof is similar to the proof of Proposition 3.2.1. □

From Proposition 3.2.2, the prerequisite is that the new object
does not belong to one original decision class. When the original
equivalence class to which this new object belongs is contained
in the upper (lower) approximation of the original decision class,
the upper (lower) approximation of the corresponding current
decision class needs to be updated.

Case 2: A new decision class appears at time t + 1, namely D+ =
{x+}.

Proposition 3.2.3. For x+, if ∀xi ∈ U, ∃d ∈ D, s.t. f (xi, d) ̸=
f (x+, d), then the following properties for R

II
k (D
+) and RII

(α,β)(D
+)

hold, where D+ = {x+}.

(1) If g([x+]R,D+) > k, then R
II
k (D
+) = [x+]R; otherwise,

R
II
k (D
+) = ∅.

(2) If P(D+|[x+]R) ≥ α, then RII
(α,β)(D

+) = [x+]R; otherwise,
RII
(α,β)(D

+) = ∅.

Proof. According to the definition of lower and upper approxi-
mations of DqII-DTRS ( formulas (2.3) and (2.4) ), we know that
only equivalence classes that intersect with D+ are not empty
may be included in the approximations R

II
k (D
+) and RII

(α,β)(D
+). So

the above conclusions are obvious. □

Example 2 (Continuation of Example 1). We elaborate on the
incremental approximation updating mechanisms of DqII-DTRS
with the insertion of an object, where the parameters of DqII-
DTRS are k = 1 and α = 2

3 .

At time t , we get that the internal grade and conditional
probability are

g(E1,D1) = 2, g(E2,D1) = 2, g(E3,D1) = 0, g(E4,D1) = 0,
g(E1,D2) = 1, g(E2,D2) = 0, g(E3,D2) = 1, g(E4,D2) = 2;

P(D1|E1) =
2
3
, P(D1|E2) = 1, P(D1|E3) = 0, P(D1|E4) = 0,

P(D2|E1) =
1
3
, P(D2|E2) = 0, P(D2|E3) = 1, P(D2|E4) = 1.

By formulas (2.3) and (2.4), there are R
II
k (D1) = E1∪E2, RII

(α,β)(D1) =

E1 ∪ E2, R
II
k (D2) = E4, RII

(α,β)(D2) = E3 ∪ E4.
At time t+1, we know that D′1 = D1∪{x9} = {x1, x2, x6, x7, x9},

D′2 = D2 = {x3, x4, x5, x8} and E ′1 = E1, E ′2 = E2, E ′3 = E3, E ′4 =
E4 ∪ {x9} = {x5, x8, x9} from Table 3.

By x9 ∈ E4 and x9 ∈ D′1, we calculate the approximations
of D′1 according to Proposition 3.2.1. Because E4 ̸⊂ R

II
k (D1) and

g(E ′4,D
′

1) = 1 ̸> k, there is R
II
k (D
′

1) = R
II
k (D1) by the conclusion

(2) of Proposition 3.2.1. Because E4 ̸⊂ RII
(α,β)(D1) and P(D′1|E

′

4) =
1
3 ≱ α, there is RII

(α,β)(D
′

1) = RII
(α,β)(D1) by the conclusion (4) of

Proposition 3.2.1.
By x9 ∈ E4 and x9 /∈ D′2, we calculate the approximations of

D′2 according to Proposition 3.2.2. Because E4 ⊆ R
II
k (D2), there

is R
II
k (D
′

2) = R
II
k (D2) ∪ {x9} by the conclusion (1) of Proposi-

tion 3.2.2. Because E4 ⊂ RII
(α,β)(D2) and P(D′2|E

′

4) =
2
3 ≥ α,

there is RII
(α,β)(D

′

2) = RII
(α,β)(D2) ∪ {x9} by the conclusion (3) of

Proposition 3.2.2.

3.3. The updating mechanisms for the concept approximations of
Dq-DTRS with the batch insertion of objects

Based on the research of the first two Sections 3.1–3.2, we can
achieve the approximation updating of DqI-DTRS and DqII-DTRS
by iteration loop when many objects are inserted sequentially at
time t+1. In this Section 3.3, we study the approximation updat-
ing methods for DqI-DTRS and DqII-DTRS when many objects are
inserted in batches over time. Let ∆U denote the newly inserted
object set at time t + 1. Next, we directly analyze the effects
of these new objects on the granular structures, then propose
incremental approximation updating mechanisms of DqI-DTRS
and DqII-DTRS.

Let ∆U/D = {M1,M2, . . . ,Ms,Ms+1, . . . ,Mu} and ∆U/C =
{N1,N2, . . . ,Ns′ ,Ns′+1, . . . ,Nv} denote decision partition and
conditional partition of ∆U , respectively. Then the decision par-
tition of U ′ is U ′/D = {D′1,D

′

2, . . . ,D
′
s, D

′

s+1, . . . ,D
′
n,D
′

n+1, . . . ,

D′n+u−s}, where for i = 1, 2, . . . , s, D′i = Di∪Mi denote the original
changed decision classes generated by incorporating the newly
inserted decision classes into the corresponding original decision
classes; for i = s + 1, s + 2, . . . , n, D′i = Di denote the original
unchanged decision classes; for i = n + 1, n + 2, . . . , n + u − s,
D′i = Mi−n+s denote the newly inserted decision classes. The con-
ditional partition of U ′ is U ′/C = {E ′1, E

′

2, . . . , E
′

s′ , E
′

s′+1, . . . , E
′
m,

E ′m+1, . . . , E
′

m+v−s′}, where for j = 1, 2, . . . , s′, E ′j = Ej ∪ Nj
denote the original changed equivalence classes generated by
incorporating the newly inserted equivalence classes into the
corresponding original equivalence classes; for j = s′ + 1, s′ +
2, . . . ,m, E ′j = Ej denote the original unchanged equivalence
classes; for j = m+ 1,m+ 2, . . . ,m+ v− s′, E ′j = Nj−m+s′ denote
the newly inserted equivalence classes. In Table 4, we give in-
formation about decision classes, equivalence classes, conditional
probability, external grade and internal grade when many objects
are inserted at the same time.
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Table 4
Information related to updating approximations with the batch insertion of objects.

Blocks D
′

i E
′

j P(D
′

i |E
′

j ) Variation g(E
′

j ,D
′

i ) Variation g(E
′

j ,D
′

i ) Variation

1. i = 1, 2, . . . , s Di ∪Mi Ej ∪ Nj
|Ej∩Di |+|Nj∩Mi |

|Ej |+|Nj |
a |Ej| − |Ej ∩ Di|

≥
|Ej ∩ Di|

≥
j = 1, 2, . . . , s

′

+|Nj| − |Nj ∩Mi| +|Nj ∩Mi|

2. i = 1, 2, . . . , s Di ∪Mi Ej
|Ej∩Di |

|Ej |
= |Ej| − |Ej ∩ Di| = |Ej ∩ Di| =

j = s
′

+ 1, . . . ,m

3. i = 1, 2, . . . , s Di ∪Mi Nj−m+s′
|N

j−m+s′
∩Mi |

|N
j−m+s′

|

b |Nj−m+s′ |− b |Nj−m+s′ ∩Mi|
b

j = m+ 1, . . . ,m+ v − s
′

|Nj−m+s′ ∩Mi|

4. i = s+ 1, . . . , n Di Ej ∪ Nj
|Ej∩Di |

|Ej |+|Nj |
<

|Ej| + |Nj|− > |Ej ∩ Di| =
j = 1, 2, . . . , s

′

|Ej ∩ Di|

5. i = s+ 1, . . . , n Di Ej
|Ej∩Di |

|Ej |
= |Ej| − |Ej ∩ Di| = |Ej ∩ Di| =

j = s
′

+ 1, . . . ,m

6. i = s+ 1, . . . , n Di Nj−m+s′ 0 b |Nj−m+s′ |
b 0 b

j = m+ 1, . . . ,m+ v − s
′

7. i = n+ 1, . . . , n+ u− s Mi−n+s Ej ∪ Nj
|Nj∩Mi−n+s |

|Ej |+|Nj |
b |Ej| + |Nj|− b |Nj ∩Mi−n+s|

b
j = 1, 2, . . . , s

′

|Nj ∩Mi−n+s|

8. i = n+ 1, . . . , n+ u− s Mi−n+s Ej 0 b |Ej| b 0 b
j = s

′

+ 1, . . . ,m

9. i = n+ 1, . . . , n+ u− s Mi−n+s Nj−m+s′
|N

j−m+s′
∩Mi−n+s |

|N
j−m+s′

|

b |Nj−m+s′ |− b |Nj−m+s′ ∩Mi−n+s|
b

j = m+ 1, . . . ,m+ v − s
′

|Nj−m+s′ ∩Mi−n+s|

aDenotes that the relationship between the original probability and the corresponding current probability is uncertain.
bDenotes that the newly inserted information about conditional probability, external grade and internal grade at time t + 1.

From Table 4, we know that two approximations of the newly
inserted decision classes (D′i , i = n+1, . . . , n+u− s) in DqI-DTRS
and DqII-DTRS models can only be calculated by the formulas
(2.1)–(2.4), because there is no prior knowledge from time t .

Proposition 3.3.1. For the original changed decision classes D′i , i =
1, 2, . . . , s, the following properties for R

I
(α,β)(D

′

i) and RI
k(D
′

i) hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a1) when Ej ⊆ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ Nj; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di)− Ej.

(a2) when Ej ̸⊂ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ E ′j ; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(b1) when Ej ⊆ RI
k(Di), if g(E ′j ,D

′

i) ≤ k, then RI
k(D
′

i) =
RI
k(Di) ∪ Nj; otherwise, RI

k(D
′

i) = RI
k(Di)− Ej.

(b2) when Ej ̸⊂ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di).

(2) For Ej, j = s′ + 1, s′ + 2, . . . ,m, there are R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) and RI

k(D
′

i) = RI
k(Di).

(3) For Ej, j = m + 1,m + 2, . . . ,m + v − s′, there are
R
I
(α,β)(D

′

i) = R
I
(α,β)(Di) ∪ {E ′j |P(D

′

i|E
′

j ) > β} and RI
k(D
′

i) =

RI
k(Di) ∪ {E ′j |g(E

′

j ,D
′

i) ≤ k}

Proposition 3.3.2. For the original unchanged decision classes D′i ,
i = s+ 1, s+ 2, . . . , n, the following conclusions for R

I
(α,β)(D

′

i) and
RI
k(D
′

i) hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a1) when Ej ⊆ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di)∪E ′j = R

I
(α,β)(Di)∪Nj; otherwise, R

I
(α,β)(D

′

i) =

R
I
(α,β)(Di)− Ej.

(a2) when Ej ̸⊂ R
I
(α,β)(Di), there is R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(b1) when Ej ⊆ RI
k(Di), if g(E ′j ,D

′

i) ≤ k, then RI
k(D
′

i) =
RI
k(Di) ∪ Nj; otherwise, RI

k(D
′

i) = RI
k(Di)− Ej.

Table 5
The system with the insertion of objects.
U a1 a2 a3 a4 d

x1 1 0 1 1 0
x2 1 1 1 1 0
x3 1 0 1 1 1
x4 0 1 0 1 1
x5 1 1 1 0 1
x6 1 0 1 1 0
x7 1 1 1 1 0
x8 1 1 1 0 1

x9 1 0 1 1 0
x10 1 1 1 1 0
x11 0 0 1 1 2
x12 0 0 1 1 2

(b2) when Ej ̸⊂ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di).

(2) For Ej, j = s′ + 1, s′ + 2, . . . ,m, there are R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) and RI

k(D
′

i) = RI
k(Di).

(3) For Ej, j = m+1,m+2, . . . ,m+v−s′, there are R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) and RI

k(D
′

i) = RI
k(Di) ∪ {Nj−m+s′ | |Nj−m+s′ |≤ k}

According to the formulas (2.1)–(2.2) and the probability and
external grade information of Table 4, Propositions 3.3.1–3.3.2 are
valid.

Example 3. A decision information system S = (U, A = C ∪
D, V , f ) at time t is shown in Table 2. At time t+1, the object set
∆U = {x9, x10, x11, x12} is inserted and its detailed information is
shown in Table 5. We elaborate on the incremental approxima-
tion updating mechanisms of DqI-DTRS with the batch insertion
of objects, where β = 1

3 and k = 1.

From Table 5, there are ∆U/D = {M1 = {x9, x10},M2 =

{x11, x12}} and ∆U/C = {N1 = {x9},N2 = {x10},N3 = {x11, x12}}.
Then we can get U ′/D = {D′1,D

′

2,D
′

3}, where the original changed
decision class D′1 = D1 ∪M1 = {x1, x2, x6, x7, x9, x10}, the original
unchanged decision class D′2 = D2 = {x3, x4, x5, x8} and the
newly inserted decision class D′3 = M2 = {x11, x12}. Similarly,
we obtain U ′/C = {E ′1, E

′

2, E
′

3, E
′

4, E
′

5}, where the original changed
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equivalence classes E ′1 = E1 ∪ N1 = {x1, x3, x6, x9} and E ′2 =
E2∪N2 = {x2, x7, x10}, the original unchanged equivalence classes
E ′3 = E3 = {x4} and E ′4 = E4 = {x5, x8}, the newly inserted
equivalence class E ′5 = N3 = {x11, x12}. From Example 1, we know
that R

I
(α,β)(D1) = E1∪E2, RI

k(D1) = E1∪E2∪E3, R
I
(α,β)(D2) = E3∪E4,

RI
k(D2) = E3 ∪ E4.
First, we calculate the approximations of D′1 by Propo-

sition 3.3.1. By E1 ⊂ R
I
(α,β)(D1), P(D′1|E

′

1) =
3
4 > β , E2 ⊂

R
I
(α,β)(D1), P(D′1|E

′

2) = 1 > β and P(D′1|E
′

5) = 0 ̸> β , there is

R
I
(α,β)(D

′

1) = R
I
(α,β)(D1) ∪ N1 ∪ N2 from the conclusions (a1) and

(2–3) of Proposition 3.3.1. Similarly, by E1 ⊂ RI
k(D1), g(E ′1,D

′

1) =
1 ≤ k, E2 ⊂ RI

k(D1), g(E ′2,D
′

1) = 0 ≤ k and g(E ′5,D
′

1) = 2 ≰ k, we
can get RI

k(D
′

1) = RI
k(D1) ∪ N1 ∪ N2 from the conclusions (b1) and

(2–3) of Proposition 3.3.1.
Then we calculate the approximations of D′2 by Proposi-

tion 3.3.2. By E1 ̸⊂ R
I
(α,β)(D2), E2 ̸⊂ R

I
(α,β)(D2), there is R

I
(α,β)(D

′

2) =

R
I
(α,β)(D2) from the conclusions (a2) and (2–3) of Proposition 3.3.2.

Similarly, by E1 ̸⊂ RI
k(D1), E2 ̸⊂ RI

k(D1) and |N3| = 2 ≰ k,
we get RI

k(D
′

2) = RI
k(D2) from the conclusions (b2) and (2–3) of

Proposition 3.3.2.
Finally we calculate the approximations of D′3 according to

formulas (2.1) and (2.2), which are R
I
(α,β)(D

′

3) = E ′5 and RI
k(D
′

3) =
E ′3 ∪ E ′5.

Proposition 3.3.3. For the original changed decision classes D′i , i =
1, 2, . . . , s, the following properties for R

II
k (D
′

i) and RII
(α,β)(D

′

i) hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a1) when Ej ⊆ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di) ∪ E ′j =

R
II
k (Di) ∪ Nj.

(a2) when Ej ̸⊂ R
II
k (Di), if g(E ′j ,D

′

i) > k, then R
II
k (D
′

i) =

R
II
k (Di) ∪ E ′j ; otherwise, R

II
k (D
′

i) = R
II
k (Di).

(b1) when Ej ⊆ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ Nj; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di)− Ej.

(b2) when Ej ̸⊂ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ E ′j ; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di).

(2) For Ej, j = s′ + 1, s′ + 2, . . . ,m, there are R
II
k (D
′

i) = R
II
k (Di)

and RII
(α,β)(D

′

i) = RII
(α,β)(Di).

(3) For Ej, j = m+ 1,m+ 2, . . . ,m+ v − s′, there are R
II
k (D
′

i) =
R
II
k (Di) ∪ {Nj−m+s′ | |Nj−m+s′ ∩ Mi|> k} and RII

(α,β)(D
′

i) =

RII
(α,β)(Di) ∪ {Nj−m+s′ |

|Nj−m+s′∩Mi|

|Nj−m+s′ |
≥ α}.

Proposition 3.3.4. For the original changed decision classes D′i , i =
s+1, s+2, . . . , n, the following properties for R

II
k (D
′

i) and RII
(α,β)(D

′

i)
hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a) if Ej ⊆ R
II
k (Di), then R

II
k (D
′

i) = R
II
k (Di) ∪ Nj; otherwise,

R
II
k (D
′

i) = R
II
k (Di).

(b1) when Ej ⊆ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ Nj; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di)− Ej.

(b2) when Ej ̸⊂ RII
(α,β)(Di), there is RII

(α,β)(D
′

i) = RII
(α,β)(Di).

(2) For Ej, j = s′ + 1, s′ + 2, . . . ,m+ v − s′, there are R
II
k (D
′

i) =
R
II
k (Di) and RII

(α,β)(D
′

i) = RII
(α,β)(Di).

According to the formulas (2.3)–(2.4) and the probability and
internal grade information of Table 4, Propositions 3.3.3–3.3.4 are
obvious.

Example 4 (Continuation of Example 3). We elaborate on the
incremental approximation updating mechanisms of DqII-DTRS
with the batch insertion of objects, where k = 1 and α = 2

3 . From
Example 2, we know that R

II
k (D1) = E1 ∪ E2, RII

(α,β)(D1) = E1 ∪ E2,

R
II
k (D2) = E4, RII

(α,β)(D2) = E3 ∪ E4.

First, we calculate the approximations of D′1 by
Proposition 3.3.3. By E1 ⊂ R

II
k (D1), E2 ⊂ R

II
k (D1) and |N3 ∩M1| =

0 ̸> k, there is R
II
k (D
′

1) = R
II
k (D1) ∪ N1 ∪ N2 from the conclusions

(a1) and (2–3) of Proposition 3.3.3. By E1 ⊂ RII
(α,β)(D1), P(D′1|E

′

1) =
3
4 ≥ α, E2 ⊂ RII

(α,β)(D1), P(D′1|E
′

2) = 1 ≥ α and |N3∩M1|
|N3|

= 0 ≱ α,
there is RII

(α,β)(D
′

1) = RII
(α,β)(D1) ∪ N1 ∪ N2 by the conclusions (b1)

and (2–3) of Proposition 3.3.3.
Then we calculate the approximations of D′2 by

Proposition 3.3.4. By E1 ̸⊂ R
II
k (D2) and E2 ̸⊂ R

II
k (D2), there is

R
II
k (D
′

2) = R
II
k (D2) from the conclusions (a) and (2) of Propo-

sition 3.3.4. By E1 ̸⊂ RII
(α,β)(D2) and E2 ̸⊂ RII

(α,β)(D2), there
is RII

(α,β)(D
′

2) = RII
(α,β)(D2) from the conclusions (b2) and (2) of

Proposition 3.3.4.
Finally we calculate the approximations of D′3 according to

formulas (2.3) and (2.4), which are R
II
k (D
′

3) = E ′5 and RII
(α,β)(D

′

3) =
E ′5.

4. Incremental approximation updating of Dq-DTRS with the
sequential and batch deletion of objects

In this section, we first study the incremental approximation
updating mechanisms of DqI-DTRS and DqII-DTRS with the se-
quential deletion of objects over time. We mainly present the
approximation updating process when deleting an object, and
that process of the sequential deletion of many objects is realized
by iteration.

Let x− be a deleted object, where x− ∈ Di and x− ∈ Ej.
So we have D′i = Di − {x−} and E ′j = Ej − {x−}. The other
equivalence classes and decision classes that do not contain x−
remain unchanged.

According to the information in Table 1, if the decision class
including the object x− is a singleton set, then n′ = n − 1;
otherwise, n′ = n. If the equivalence class including the object
x− is a singleton set, then m′ = m − 1; otherwise, m′ = m.
Detailed variations of conditional probability, external grade and
internal grade are shown in the following lemma, where the other
decision classes, equivalence classes, conditional probability, ex-
ternal grade and internal grade remain unchanged except that
mentioned in the conclusions of Lemma 4.1.

Lemma 4.1. When an object x− is deleted at time t + 1, we have
the following conclusions:

(1) If |Di| > 1 (i ∈ {1, 2, . . . , n}) and |Ej| > 1 (j ∈ {1, 2, . . . ,
m}), there are
p′1j > p1j, p′2j > p2j, . . . , p′i−1,j > pi−1,j, p′ij < pij, p′i+1,j >

pi+1,j, . . . , p′nj > pnj;
e′1j < e1j, e′2j < e2j, . . . , e′i−1,j < ei−1,j, e′i+1,j < ei+1,j, . . . , e′nj
< enj;
i′ij < iij.

(2) If |Di| > 1 (i ∈ {1, 2, . . . , n}) and |Ej| = 1 (j ∈ {1, 2, . . . ,
m}), there are
p′1,j = p′2,j = · · · = p′n,j = ×; e

′

1,j = e′2,j = · · · = e′n,j = ×;
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i′1,j = i′2,j = · · · = i′n,j = ×; where × represents the deleted
value.

(3) If |Di| = 1 (i ∈ {1, 2, . . . , n}) and |Ej| > 1 (j ∈ {1, 2, . . . ,
m}), there are
p′i,1 = p′i,2 = · · · = p′i,m = ×, p′1j > p1j, p′2j >

p2j, . . . , p′i−1,j > pi−1,j, p′i+1,j > pi+1,j, . . . , p′nj > pnj;
e′i,1 = e′i,2 = · · · = e′i,m = ×, e

′

1j < e1j, e′2j < e2j, . . . , e′i−1,j <

ei−1,j, e′i+1,j < ei+1,j, . . . , e′nj < enj;
i′i,1 = i′i,2 = · · · = i′i,m = ×.

(4) If |Di| = 1 (i ∈ {1, 2, . . . , n}) and |Ej| = 1 (j ∈ {1, 2, . . . ,
m}), there are
p′i,1 = p′i,2 = · · · = p′i,m = ×, p

′

1,j = p′2,j = · · · = p′n,j = ×;
e′i,1 = e′i,2 = · · · = e′i,m = ×, e

′

1,j = e′2,j = · · · = e′n,j = ×;
i′i,1 = i′i,2 = · · · = i′i,m = ×, i

′

1,j = i′2,j = · · · = i′n,j = ×.

The conclusions of Lemma 4.1 can be obtained similar to the
proving method of Lemma 3.1. In the following, we give more
intuitive results of the changes of conditional probability, external
grade and internal grade with the deletion of an object.

P
′

(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

p11 · · · p1,j−1 > p1j p1,j+1 · · · p1m
· · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 > pi−1,j pi−1,j+1 · · · pi−1,m
pi1 · · · pi,j−1 < pij pi,j+1 · · · pim
pi+1,1 · · · pi+1,j−1 > pi+1j pi+1,j+1 · · · pi+1,m
· · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 > pnj pn,j+1 · · · pnm

⎞⎟⎟⎟⎟⎟⎟⎟⎠

P
′

(2) =

⎛⎜⎜⎜⎜⎝
p11 · · · p1,j−1 × p1,j+1 · · · p1m
· · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 × pi−1,j+1 · · · pi−1,m
pi1 · · · pi,j−1 × pi,j+1 · · · pim
pi+1,1 · · · pi+1,j−1 × pi+1,j+1 · · · pi+1,m
· · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 × pn,j+1 · · · pnm

⎞⎟⎟⎟⎟⎠

E
′

(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e11 · · · e1,j−1 < e1j e1,j+1 · · · e1m
· · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 < ei−1,j ei−1,j+1 · · · ei−1,m
ei1 · · · ei,j−1 eij ei,j+1 · · · eim
ei+1,1 · · · ei+1,j−1 < ei+1j ei+1,j+1 · · · ei+1,m
· · · · · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 < enj en,j+1 · · · enm

⎞⎟⎟⎟⎟⎟⎟⎟⎠

E
′

(2) =

⎛⎜⎜⎜⎜⎝
e11 · · · e1,j−1 × e1,j+1 · · · e1m
· · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 × ei−1,j+1 · · · ei−1,m
ei1 · · · ei,j−1 × ei,j+1 · · · eim
ei+1,1 · · · ei+1,j−1 × ei+1,j+1 · · · ei+1,m
· · · · · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 × en,j+1 · · · enm

⎞⎟⎟⎟⎟⎠

I
′

(1) =

⎛⎜⎜⎜⎝
i11 · · · i1,j−1 i1j i1,j+1 · · · i1m
· · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 ii−1,j ii−1,j+1 · · · ii−1,m
ii1 · · · ii,j−1 < iij ii,j+1 · · · iim
ii+1,1 · · · ii+1,j−1 ii+1,j ii+1,j+1 · · · ii+1,m
· · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 inj in,j+1 · · · inm

⎞⎟⎟⎟⎠

I
′

(2) =

⎛⎜⎜⎜⎝
i11 · · · i1,j−1 × i1,j+1 · · · i1m
· · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 × ii−1,j+1 · · · ii−1,m
ii1 · · · ii,j−1 × ii,j+1 · · · iim
ii+1,1 · · · ii+1,j−1 × ii+1,j+1 · · · ii+1,m
· · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 × in,j+1 · · · inm

⎞⎟⎟⎟⎠

P
′

(3) =

⎛⎜⎜⎜⎝
p11 · · · p1,j−1 > p1j p1,j+1 · · · p1m
· · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 > pi−1,j pi−1,j+1 · · · pi−1,m
× · · · × × × · · · ×

pi+1,1 · · · pi+1,j−1 > pi+1,j pi+1,j+1 · · · pi+1,m
· · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 > pnj pn,j+1 · · · pnm

⎞⎟⎟⎟⎠

P
′

(4) =

⎛⎜⎜⎜⎝
p11 · · · p1,j−1 × p1,j+1 · · · p1m
· · · · · · · · · · · · · · · · · · · · ·

pi−1,1 · · · pi−1,j−1 × pi−1,j+1 · · · pi−1,m
× · · · × × × · · · ×

pi+1,1 · · · pi+1,j−1 × pi+1,j+1 · · · pi+1,m
· · · · · · · · · · · · · · · · · · · · ·

pn1 · · · pn,j−1 × pn,j+1 · · · pnm

⎞⎟⎟⎟⎠

E
′

(3) =

⎛⎜⎜⎜⎝
e11 · · · e1,j−1 < e1j e1,j+1 · · · e1m
· · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 < ei−1,j ei−1,j+1 · · · ei−1,m
× · · · × × × · · · ×

ei+1,1 · · · ei+1,j−1 < ei+1,j ei+1,j+1 · · · ei+1,m
· · · · · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 < enj en,j+1 · · · enm

⎞⎟⎟⎟⎠

E
′

(4) =

⎛⎜⎜⎜⎝
e11 · · · e1,j−1 × e1,j+1 · · · e1m
· · · · · · · · · · · · · · · · · · · · ·

ei−1,1 · · · ei−1,j−1 × ei−1,j+1 · · · ei−1,m
× · · · × × × · · · ×

ei+1,1 · · · ei+1,j−1 × ei+1,j+1 · · · ei+1,m
· · · · · · · · · · · · · · · · · ·

en1 · · · en,j−1 × en,j+1 · · · enm

⎞⎟⎟⎟⎠

I
′

(3) =

⎛⎜⎜⎜⎝
i11 · · · i1,j−1 i1j i1,j+1 · · · i1m
· · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 ii−1,j ii−1,j+1 · · · ii−1,m
× · · · × × × · · · ×

ii+1,1 · · · ii+1,j−1 ii+1,j ii+1,j+1 · · · ii+1,m
· · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 inj in,j+1 · · · inm

⎞⎟⎟⎟⎠

I
′

(4) =

⎛⎜⎜⎜⎝
i11 · · · i1,j−1 × i1,j+1 · · · i1m
· · · · · · · · · · · · · · · · · · · · ·

ii−1,1 · · · ii−1,j−1 × ii−1,j+1 · · · ii−1,m
× · · · × × × · · · ×

ii+1,1 · · · ii+1,j−1 × ii+1,j+1 · · · ii+1,m
· · · · · · · · · · · · · · · · · · · · ·

in1 · · · in,j−1 × in,j+1 · · · inm

⎞⎟⎟⎟⎠
In the above P ′(1)−(4), E

′

(1)−(4), I
′

(1)−(4), the blue crosses represent
the deleted values. From the P ′(1)−(4), E

′

(1)−(4), I
′

(1)−(4), we can see

the information association and the change between time t and
time t + 1 with the deletion of an object. When updating the
upper and lower approximations with the deletion of an object,
we are mainly concerned with the information changes between
the equivalence class including this object and decision classes,
that is, the jth column of the above matrices.

4.1. The updating mechanisms for the concept approximations of
DqI-DTRS with the deletion of an object

We first study the updating mechanisms for the approxima-
tions of DqI-DTRS when x− is deleted from the original decision
system at time t + 1. Let x− ∈ Ej, then E ′j = Ej − {x−}.

Proposition 4.1.1. Let x− ∈ Ej, if x− ∈ Di, the following properties
for R

I
(α,β)(D

′

i) and RI
k(D
′

i) hold.

(1) When Ej ⊆ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di)− {x−}; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di)− Ej.

(2) When Ej ̸⊂ R
I
(α,β)(Di), there is R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(3) When Ej ⊆ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di)− {x−}.

(4) When Ej ̸⊂ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di).

Proof. When x− ∈ Ej and x− ∈ Di, we can get E ′j = Ej − {x−},
D′i = Di − {x−} and |E ′j ∩ D′i| = |Ej ∩ Di| − 1.

(1) By Ej ⊆ R
I
(α,β)(Di) and P(D′i|E

′

j ) > β , there is R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di)−{x−}. On the contrary, according to Ej ⊆ R

I
(α,β)(Di) and

E ′j ̸⊂ R
I
(α,β)(D

′

i), we can get R
I
(α,β)(D

′

i) = R
I
(α,β)(Di)− Ej.
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(2) According to Ej ̸⊂ R
I
(α,β)(Di) and P(D′i|E

′

j ) =
|Ej∩Di|−1
|Ej|−1

<

P(Di|Ej), we can obtain that E ′j ̸⊂ R
I
(α,β)(D

′

i). So R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di).
(3) By Ej ⊆ RI

k(Di) and g(E ′j ,D
′

i) = g(Ej,Di), there is E ′j ⊆ RI
k(D
′

i).
Therefore, RI

k(D
′

i) = RI
k(Di)− {x−}.

(4) According to Ej ̸⊂ RI
k(Di) and g(E ′j ,D

′

i) = g(Ej,Di), we can
get RI

k(D
′

i) = RI
k(Di). □

From Proposition 4.1.1, we first consider a prerequisite,
namely the deleted object belongs to one original decision class.
In the DqI-DTRS model, when the original equivalence class
to which the deleted object belongs is contained in the upper
(lower) approximation of the original decision class, the upper
(lower) approximation of the corresponding current decision
class needs to be updated.

Proposition 4.1.2. Let x− ∈ Ej, If x− /∈ Di, the following properties
for R

I
(α,β)(D

′

i) and RI
k(D
′

i) hold.

(1) When Ej ⊆ R
I
(α,β)(Di), there is R

I
(α,β)(D

′

i) = R
I
(α,β)(Di)− {x−}.

(2) When Ej ̸⊂ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ E ′j ; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(3) When Ej ⊆ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di)− {x−}.

(4) When Ej ̸⊂ RI
k(Di), if g(E ′j ,D

′

i) ≤ k, then RI
k(D
′

i) = RI
k(Di)∪ E ′j ;

otherwise, RI
k(D
′

i) = RI
k(Di).

Proof. From x− ∈ Ej and x− /∈ Di, we can get E ′j = Ej − {x−},
D′i = Di and |E ′j ∩ D′i| = |Ej ∩ Di|. Furthermore, two inequations
P(D′i|E

′

j ) > P(Di|Ej) and g(E ′j ,D
′

i) < g(Ej,Di) are obtained. The

properties of R
I
(α,β)(D

′

i) and RI
k(D
′

i) can be obtained by analogous
to the proof method of Proposition 4.1.1. □

In Proposition 4.1.2, the prerequisite is that the deleted object
does not belong to one original decision class. In the DqI-DTRS
model, when the original equivalence class to which the deleted
object belongs is contained in the upper (lower) approximation
of the original decision class, the upper (lower) approximation of
the corresponding current decision class can be updated directly.
When this original equivalence class is not contained in the upper
(lower) approximation of the original decision class, we need
to further determine whether the current conditional probabil-
ity (external grade) meets the threshold requirement. Then we
decide whether to update the upper (lower) approximation.

Example 5. A decision information system S = (U, A = C ∪
D, V , f ) at time t is shown in Table 2. At time t + 1, the object
x8 is deleted. We elaborate on the incremental approximation
updating mechanisms of DqI-DTRS with the deletion of an object,
where β = 1

3 and k = 1. From Example 1, we know that
R
I
(α,β)(D1) = E1 ∪ E2, RI

k(D1) = E1 ∪ E2 ∪ E3, R
I
(α,β)(D2) = E3 ∪ E4,

RI
k(D2) = E3 ∪ E4. At time t + 1, we know that D′1 = D1 =

{x1, x2, x6, x7},D′2 = D2 − {x8} = {x3, x4, x5} and E ′1 = E1 =
{x1, x3, x6}, E ′2 = E2 = {x2, x7}, E ′3 = E3 = {x4}, E ′4 = E4 − {x8} =
{x5} from Table 2.

By x8 ∈ E4 and x8 ∈ D2, we calculate the approximations
of D′2 according to Proposition 4.1.1. Because E4 ⊂ R

I
(α,β)(D2),

P(D′2|E
′

4) = 1 > β , E4 ⊂ RI
k(D2), we get R

I
(α,β)(D

′

2) = R
I
(α,β)(D2) −

{x8} and RI
k(D
′

2) = RI
k(D2)− {x8} from the conclusions (1) and (3)

of Proposition 4.1.1.

By x8 ∈ E4 and x8 ̸∈ D1, we calculate the approximations
of D′1 according to Proposition 4.1.2. Because E4 ̸⊂ R

I
(α,β)(D1),

P(D′1|E
′

4) = 0 ̸> β , E4 ̸⊂ RI
k(D1) and g(E ′4,D

′

1) = 1 ≤ k, we

get R
I
(α,β)(D

′

1) = R
I
(α,β)(D1) and RI

k(D
′

1) = RI
k(D1) ∪ E ′4 from the

conclusions (2) and (4) of Proposition 4.1.2.

4.2. The updating mechanisms for the concept approximations of
DqII-DTRS with the deletion of an object

In the following, we propose the updating mechanisms for the
approximations of DqII-DTRS when an object x− is deleted. Let
x− ∈ Ej, then E ′j = Ej − {x−}.

Proposition 4.2.1. Let x− ∈ Ej, if x− ∈ Di, the following properties
for R

II
k (D
′

i) and RII
(α,β)(D

′

i) hold.

(1) When Ej ⊆ R
II
k (Di), if g(E ′j ,D

′

i) > k, then R
II
k (D
′

i) = R
II
k (Di) −

{x−}; otherwise, R
II
k (D
′

i) = R
II
k (Di)− Ej.

(2) When Ej ̸⊂ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di).

(3) When Ej ⊆ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di)− {x−}; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di)− Ej.

(4) When Ej ̸⊂ RII
(α,β)(Di), there is RII

(α,β)(D
′

i) = RII
(α,β)(Di).

Proof. When x− ∈ Ej and x− ∈ Di, we can get E ′j = Ej − {x−},
D′i = Di − {x−} and |E ′j ∩ D′i| = |Ej ∩ Di| − 1. Furthermore,
two inequations g(E ′j ,D

′

i) < g(Ej,Di) and P(D′i|E
′

j ) < P(Di|Ej) are
obtained.

(1) According to Ej ⊆ R
II
k (Di) and g(E ′j ,D

′

i) > k, we can get

R
II
k (D
′

i) = R
II
k (Di)−{x−}. Otherwise, by Ej ⊆ R

II
k (Di) and E ′j ̸⊂ R

II
k (D
′

i),

there is R
II
k (D
′

i) = R
II
k (Di)− Ej.

(2) By Ej ̸⊂ R
II
k (Di), there is E ′j ̸⊂ R

II
k (D
′

i). Therefore, R
II
k (D
′

i) =

R
II
k (Di).
(3) When Ej ⊆ RII

(α,β)(Di), if P(D′i|E
′

j ) ≥ α, there is E ′j ⊆
RII
(α,β)(D

′

i). Furthermore, we can get RII
(α,β)(D

′

i) = RII
(α,β)(Di) − {x−}.

On the contrary, by E ′j ̸⊂ RII
(α,β)(D

′

i) and Ej ⊆ RII
(α,β)(Di), we can

obtain RII
(α,β)(D

′

i) = RII
(α,β)(Di)− Ej.

(4) By Ej ̸⊂ RII
(α,β)(Di) and P(D′i|E

′

j ) < P(Di|Ej), it is true that
RII
(α,β)(D

′

i) = RII
(α,β)(Di). □

From Proposition 4.2.1, we first consider a prerequisite,
namely the deleted object belongs to one original decision class.
In the DqII-DTRS model, when the original equivalence class
to which the deleted object belongs is contained in the upper
(lower) approximation of the original decision class, the upper
(lower) approximation of the corresponding current decision
class needs to be updated.

Proposition 4.2.2. Let x− ∈ Ej, if x− /∈ Di, the following properties
for R

II
k (D
′

i) and RII
(α,β)(D

′

i) hold.

(1) When Ej ⊆ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di)− {x−}.

(2) When Ej ̸⊂ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di).

(3) When Ej ⊆ RII
(α,β)(Di), there is RII

(α,β)(D
′

i) = RII
(α,β)(Di)− {x−}.

(4) When Ej ̸⊂ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ E ′j ; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di).

Proof. The properties about R
II
k (D
′

i) and RII
(α,β)(D

′

i) can be easily
obtained by formulas (2.3)–(2.4) and two expressions g(E ′j ,D

′

i) =
g(Ej,Di) and P(D′i|E

′

j ) > P(Di|Ej). □
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Table 6
Information related to updating approximations with the batch deletion of objects.

Blocks D
′

i E
′

j P(D
′

i |E
′

j ) Variation g(E
′

j ,D
′

i ) Variation g(E
′

j ,D
′

i ) Variation

1. i = 1, 2, . . . , s Di −Mi Ej − Nj
|Ej∩Di |−|Nj∩Mi |

|Ej |−|Nj |
a |Ej| − |Ej ∩ Di|

≤
|Ej ∩ Di|

≤
j = 1, 2, . . . , s

′

−|Nj| + |Nj ∩Mi| −|Nj ∩Mi|

2. i = 1, 2, . . . , s Di −Mi Ej
|Ej∩Di |

|Ej |
= |Ej| − |Ej ∩ Di| = |Ej ∩ Di| =

j = s
′

+ 1, . . . ,m− v + s
′

3. i = 1, 2, . . . , s Di −Mi
b b b b b b b

j = m− v + s
′

+ 1, . . . ,m

4. i = s+ 1, . . . , n− u+ s Di Ej − Nj
|Ej∩Di |

|Ej |−|Nj |
>

|Ej| − |Nj|− < |Ej ∩ Di| =
j = 1, 2, . . . , s

′

|Ej ∩ Di|

5. i = s+ 1, . . . , n− u+ s Di Ej
|Ej∩Di |

|Ej |
= |Ej| − |Ej ∩ Di| = |Ej ∩ Di| =

j = s
′

+ 1, . . . ,m− v + s
′

6. i = s+ 1, . . . , n− u+ s Di
b b b b b b b

j = m− v + s
′

+ 1, . . . ,m

7. i = n− u+ s+ 1, . . . , n b Ej − Nj
b b b b b b

j = 1, 2, . . . , s
′

8. i = n− u+ s+ 1, . . . , n b Ej b b b b b b
j = s

′

+ 1, . . . ,m− v + s
′

9. i = n− u+ s+ 1, . . . , n b b b b b b b b
j = m− v + s

′

+ 1, . . . ,m

aDenotes that the relationship between the conditional probability of time t + 1 and that of time t is uncertain.
bDenotes that the deleted information along with the deletion of decision classes and equivalence classes at time t + 1.

In Proposition 4.2.2, the prerequisite is that the deleted object
does not belong to one original decision class. In the DqII-DTRS
model, when the original equivalence class to which the deleted
object belongs is contained in the upper (lower) approximation
of the original decision class, the upper (lower) approximation of
the corresponding current decision class can be updated directly.
When this original equivalence class is not contained in the lower
approximation of the original decision class, we need to update
the lower approximation of the corresponding current decision
class as long as the current conditional probability is not less than
α.

Example 6 (Continuation of Example 5). We elaborate on the
incremental approximation updating mechanisms of DqII-DTRS
with the deletion of an object, where k = 1 and α = 2

3 .

From Example 2, we know that R
II
k (D1) = E1 ∪ E2, RII

(α,β)(D1) =

E1 ∪ E2, R
II
k (D2) = E4, RII

(α,β)(D2) = E3 ∪ E4. At time t + 1, we know
that D′1 = D1 = {x1, x2, x6, x7},D′2 = D2 − {x8} = {x3, x4, x5} and
E ′1 = E1 = {x1, x3, x6}, E ′2 = E2 = {x2, x7}, E ′3 = E3 = {x4}, E ′4 =
E4 − {x8} = {x5} from Table 2.

By x8 ∈ E4 and x8 ∈ D2, we calculate the approximations of D′2
according to Proposition 4.2.1. Because E4 ⊂ R

II
k (D2), g(E ′4,D

′

2) =

1 ̸> k, E4 ⊂ RII
(α,β)(D2), P(D′2|E

′

4) = 1 ≥ α, we get R
II
k (D
′

2) =

R
II
k (D2)−E4 and RII

(α,β)(D
′

2) = RII
(α,β)(D2)−{x8} from the conclusions

(1) and (3) of Proposition 4.2.1.
By x8 ∈ E4 and x8 ̸∈ D1, we calculate the approxima-

tions of D′1 according to Proposition 4.2.2. Because E4 ̸⊂ R
II
k (D1),

E4 ̸⊂ RII
(α,β)(D1), P(D′1|E

′

4) = 0 ≱ α, we get R
II
k (D
′

1) = R
II
k (D1)

and RII
(α,β)(D

′

1) = RII
(α,β)(D1) from the conclusions (2) and (4) of

Proposition 4.2.2.

4.3. The updating mechanisms for the concept approximations of
Dq-DTRS with the batch deletion of objects

In this subsection, we study the approximation updating
methods of DqI-DTRS and of DqII-DTRS when many objects are
deleted simultaneously at time t + 1. Next, we propose the

incremental approximation updating mechanisms of DqI-DTRS
and DqII-DTRS with the batch deletion of objects.

Let ∆U denote the deleted object set at time t + 1, and
∆U/D = {M1,M2, . . . ,Ms,Ms+1, . . . ,Mu} and ∆U/C = {N1,N2,

. . . ,Ns′ ,Ns′+1, . . . ,Nv} denote decision partition and conditional
partition of ∆U , respectively. Then the decision partition of U ′
is U ′/D = {D′1,D

′

2, . . . ,D
′
s,D
′

s+1, . . . ,D
′
n−u+s}, where for i =

1, 2, . . . , s, D′i = Di − Mi denote the original changed decision
classes; for i = s + 1, s + 2, . . . , n − u + s, D′i = Di denote
the original unchanged decision classes. Other decision classes
Di = Mi−n+u(i = n − u + s + 1, n − u + s + 2, . . . , n) are com-
pletely removed. And the conditional partition of U ′ is U ′/C =
{E ′1, E

′

2, . . . , E
′

s′ , E
′

s′+1, . . . , E
′

m−v+s′}, where for j = 1, 2, . . . , s′,
E ′j = Ej − Nj denote the original changed equivalence classes;
for j = s′ + 1, s′ + 2, . . . ,m − v + s′, E ′j = Ej denote the
original unchanged equivalence classes. Other equivalence classes
Ej = Nj−m+v , j = m−v+s′+1,m−v+s′+2, . . . ,m, are completely
removed. In Table 6, we give information about decision classes,
equivalence classes, conditional probability, external grade and
internal grade when many objects are deleted at the same time.

From Table 6, we know that only the approximations of the
decision classes (D′i , i = 1, . . . , n − u + s) in DqI-DTRS and
DqII-DTRS models need to be calculated at time t + 1.

Proposition 4.3.1. For the original changed decision classes D′i , i =
1, 2, . . . , s, the following conclusions for R

I
(α,β)(D

′

i) and RI
k(D
′

i) hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a1) when Ej ⊆ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di)− Nj; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di)− Ej.

(a2) when Ej ̸⊂ R
I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ E ′j ; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(b1) when Ej ⊆ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di)− Nj.

(b2) when Ej ̸⊂ RI
k(Di), if g(E ′j ,D

′

i) ≤ k, then RI
k(D
′

i) =
RI
k(Di) ∪ E ′j ; otherwise, RI

k(D
′

i) = RI
k(Di).

(2) For Ej, j = s′+1, s′+2, . . . ,m−v+ s′, there are R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) and RI

k(D
′

i) = RI
k(Di).
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(3) For Ej, j = m − v + s′ + 1,m − v + s′ + 2, . . . ,m, there
are R

I
(α,β)(D

′

i) = R
I
(α,β)(Di) − Ej = R

I
(α,β)(Di) − Nj−m+v and

RI
k(D
′

i) = RI
k(Di)− Ej = RI

k(Di)− Nj−m+v .

Proposition 4.3.2. For the original unchanged decision classes D′i ,
i = s+1, s+2, . . . , n−u+s, the following conclusions for R

I
(α,β)(D

′

i)
and RI

k(D
′

i) hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a1) when Ej ⊆ R
I
(α,β)(Di), there is R

I
(α,β)(D

′

i) = R
I
(α,β)(Di)−

Nj.
(a2) when Ej ̸⊂ R

I
(α,β)(Di), if P(D′i|E

′

j ) > β , then R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) ∪ E ′j ; otherwise, R

I
(α,β)(D

′

i) = R
I
(α,β)(Di).

(b1) when Ej ⊆ RI
k(Di), there is RI

k(D
′

i) = RI
k(Di)− Nj.

(b2) when Ej ̸⊂ RI
k(Di), if g(E ′j ,D

′

i) ≤ k, then RI
k(D
′

i) =
RI
k(Di) ∪ E ′j ; otherwise, RI

k(D
′

i) = RI
k(Di).

(2) For Ej, j = s′+1, s′+2, . . . ,m−v+ s′, there are R
I
(α,β)(D

′

i) =

R
I
(α,β)(Di) and RI

k(D
′

i) = RI
k(Di).

(3) For Ej, j = m− v + s′ + 1,m− v + s′ + 2, . . . ,m, there are
R
I
(α,β)(D

′

i) = R
I
(α,β)(Di)−Nj−m+v and RI

k(D
′

i) = RI
k(Di)−Nj−m+v .

According to the formulas (2.1)–(2.2) and the probability and
external grade information of Table 6, Propositions 4.3.1–4.3.2 are
true.

Example 7. A decision information system S = (U, A = C ∪
D, V , f ) at time t is shown in Table 2. At time t + 1, an object set
∆U = {x5, x6, x7, x8} is deleted. We elaborate on the incremental
approximation updating mechanisms of DqI-DTRS with the batch
deletion of objects, where β = 1

3 and k = 1.
From Example 1, we know that R

I
(α,β)(D1) = E1 ∪ E2, RI

k(D1) =

E1 ∪ E2 ∪ E3, R
I
(α,β)(D2) = E3 ∪ E4, RI

k(D2) = E3 ∪ E4. From
Table 2, there are ∆U/D = {M1 = {x6, x7},M2 = {x5, x8}} and
∆U/C = {N1 = {x6},N2 = {x7},N3 = {x5, x8}}. Then we can
get U ′/D = {D′1,D

′

2}, where the original changed decision classes
D′1 = D1 −M1 = {x1, x2} and D′2 = D2 −M2 = {x3, x4}. Similarly,
we obtain U ′/C = {E ′1, E

′

2, E
′

3}, where the original changed equiv-
alence classes E ′1 = E1−N1 = {x1, x3} and E ′2 = E2−N2 = {x2}, the
original unchanged equivalence class E ′3 = E3 = {x4}. It should be
noted that the original equivalence class E4 = {x5, x8} has been
completely removed.

We calculate the approximations of the original changed de-
cision classes D′1 and D′2 by Proposition 4.3.1.

By E1 ⊂ R
I
(α,β)(D1), P(D′1|E

′

1) =
1
2 > β , E2 ⊂ R

I
(α,β)(D1) and

P(D′1|E
′

2) = 1 > β , the upper approximation of D′1 is R
I
(α,β)(D

′

1) =

R
I
(α,β)(D1) − N1 − N2 − E4 = {x1, x2, x3} from the conclusions

(a1) and (2–3) of Proposition 4.3.1. Similarly, by E1 ⊂ RI
k(D1),

E2 ⊂ RI
k(D1), the lower approximation of D′1 is RI

k(D
′

1) = RI
k(D1)−

N1−N2−E4 = {x1, x2, x3, x4} from the conclusions (b1) and (2–3)
of Proposition 4.3.1.

By E1 ̸⊂ R
I
(α,β)(D2), P(D′2|E

′

1) =
1
2 > β , E2 ̸⊂ R

I
(α,β)(D2) and

P(D′2|E
′

2) = 0 ̸> β , there is R
I
(α,β)(D

′

2) = R
I
(α,β)(D2) ∪ E ′1 − E4 from

the conclusions (a2) and (2–3) of Proposition 4.3.1. Similarly, by
E1 ̸⊂ RI

k(D2), g(E ′1,D
′

2) = 1 ≤ k, E2 ̸⊂ RI
k(D2) and g(E ′2,D

′

2) = 1 ≤
k, there is RI

k(D
′

2) = RI
k(D2) ∪ E ′1 ∪ E ′2 − E4 from the conclusions

(b2) and (2–3) of Proposition 4.3.1.

Proposition 4.3.3. For the original changed decision classes D′i , i =
1, 2, . . . , s, the following conclusions for R

II
k (D
′

i) and RII
(α,β)(D

′

i) hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a1) when Ej ⊆ R
II
k (Di), if g(E ′j ,D

′

i) > k, then R
II
k (D
′

i) =

R
II
k (Di)− Nj; otherwise, R

II
k (D
′

i) = R
II
k (Di)− Ej.

(a2) when Ej ̸⊂ R
II
k (Di), there is R

II
k (D
′

i) = R
II
k (Di).

(b1) when Ej ⊆ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di)− Nj; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di)− Ej.

(b2) when Ej ̸⊂ RII
(α,β)(Di), if P(D′i|E

′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ E ′j ; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di).

(2) For Ej, j = s′ + 1, s′ + 2, . . . ,m− v + s′, there are R
II
k (D
′

i) =
R
II
k (Di) and RII

(α,β)(D
′

i) = RII
(α,β)(Di).

(3) For Ej, j = m − v + s′ + 1,m − v + s′ + 2, . . . ,m, there
are R

II
k (D
′

i) = R
II
k (Di) − Nj−m+v and RII

(α,β)(D
′

i) = RII
(α,β)(Di) −

Nj−m+v .

Proposition 4.3.4. For the original unchanged decision classes D′i ,
i = s+ 1, s+ 2, . . . , n− u+ s, the following conclusions for R

II
k (D
′

i)
and RII

(α,β)(D
′

i) hold.

(1) For Ej, j = 1, 2, . . . , s′,

(a) if Ej ⊆ R
II
k (Di), then R

II
k (D
′

i) = R
II
k (Di) − Nj; otherwise,

R
II
k (D
′

i) = R
II
k (Di).

(b1) when Ej ⊆ RII
(α,β)(Di), there is RII

(α,β)(D
′

i) = RII
(α,β)(Di)−

Nj.
(b2) when Ej ̸⊂ RII

(α,β)(Di), if P(D′i|E
′

j ) ≥ α, then RII
(α,β)(D

′

i) =
RII
(α,β)(Di) ∪ E ′j ; otherwise, RII

(α,β)(D
′

i) = RII
(α,β)(Di).

(2) For Ej, j = s′ + 1, s′ + 2, . . . ,m− v + s′, there are R
II
k (D
′

i) =
R
II
k (Di) and RII

(α,β)(D
′

i) = RII
(α,β)(Di).

(3) For Ej, j = m − v + s′ + 1,m − v + s′ + 2, . . . ,m, there

are R
II
k (D
′

i) = R
II
k (Di) − Nj−m+v and RII

(α,β)(Di) = RII
(α,β)(Di) −

Nj−m+v .

According to the formulas (2.3)–(2.4) and the probability and
internal grade information of Table 6, Propositions 4.3.3–4.3.4 are
true.

Example 8 (Continuation of Example 7). We elaborate on the
incremental approximation updating mechanisms of DqII-DTRS
with the batch deletion of objects, where the parameters are
k = 1 and α = 2

3 . From Example 2, we know that R
II
k (D1) = E1∪E2,

RII
(α,β)(D1) = E1∪E2, R

II
k (D2) = E4, RII

(α,β)(D2) = E3∪E4. We calculate
the approximations of D′1 and D′2 by Proposition 4.3.3.

By E1 ⊂ R
II
k (D1), g(E ′1,D

′

1) = 1 ̸> k, E2 ⊂ R
II
k (D1) and

g(E ′2,D
′

1) = 1 ̸> k, the upper approximation of D′1 is R
II
k (D
′

1) =
R
II
k (D1) − E1 − E2 − E4 from the conclusions (a1) and (2–3) of

Proposition 4.3.3. Similarly, by E1 ⊂ RII
(α,β)(D1), P(D′1|E

′

1) =
1
2 ≱ α,

E2 ⊂ RII
(α,β)(D1) and P(D′1|E

′

2) = 1 ≥ α, the lower approximation
of D′1 is RII

(α,β)(D
′

1) = RII
(α,β)(D1) − E1 − N2 − E4 = {x2} from the

conclusions (b1) and (2–3) of Proposition 4.3.3.
By E1 ̸⊂ R

II
k (D2) and E2 ̸⊂ R

II
k (D2), the upper approximation of

D′2 is R
II
k (D
′

2) = R
II
k (D2)−E4 from the conclusions (a2) and (2–3) of

Proposition 4.3.3. Similarly, by E1 ̸⊂ RII
(α,β)(D2), P(D′2|E

′

1) =
1
2 ≱ α,

E2 ̸⊂ RII
(α,β)(D2) and P(D′2|E

′

2) = 0 ≱ α, the lower approximation

of D′2 is RII
(α,β)(D

′

2) = RII
(α,β)(D2)− E4 from the conclusions (b2) and

(2–3) of Proposition 4.3.3.
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5. Static and incremental algorithms for updating approxima-
tions of Dq-DTRS in dynamic decision systems

In order to more intuitively demonstrate the feasibility and ef-
ficiency of the incremental approximation updating mechanisms
of Dq-DTRS, we design static algorithms (as a comparative stan-
dard) and incremental algorithms to calculate the approximations
of DqI-DTRS and DqII-DTRS at time t + 1, respectively.

5.1. Static algorithms for computing the approximations of Dq-DTRS
models

Two traditional approaches for computing the lower and up-
per approximations of DqI-DTRS and DqII-DTRS in dynamic deci-
sion information systems are given in algorithms 1 and 2.

Algorithm 1: A static algorithm of DqI-DTRS (SA-I)

Input : A decision information system S
′

= (U
′

, A, V
′

, f
′

), all
decision classes D

′

i , i = 1, 2, · · · , n
′

and parameters β, k.

Output: R
I
(α,β)(D

′

i ) and RI
k(D

′

i ), i = 1, 2, · · · , n
′

.
1 begin
2 for each x ∈ U

′ do
3 compute: all equivalence classes E

′

j , j = 1, 2, · · · ,m
′

generated by C in U
′

4 end
5 for i = 1, 2, · · · , n

′ do
6 Init: R

I
(α,β)(D

′

i )← ∅, R
I
k(D

′

i )← ∅
7 for j = 1, 2, · · · ,m

′ do
8 compute:P(D′i |E

′

j ) = |E
′

j ∩ D
′

i |/|E
′

j |

9 compute:g(E ′j ,D
′

i ) = |E
′

j |−|E
′

j ∩ D
′

i |

10 if P(D′i |E
′

j ) > β then
11 R

I
(α,β)(D

′

i )← R
I
(α,β)(D

′

i ) ∪ E
′

j //Compute the
upper approximation of DqI-DTRS by formula
2.1

12 end
13 if g(E ′j ,D

′

i ) ≤ k then
14 RI

k(D
′

i )← RI
k(D

′

i ) ∪ E
′

j //Compute the
lower approximation of DqI-DTRS by formula
2.2

15 end
16 end
17 end

return : R
I
(α,β)(D

′

i ), R
I
k(D

′

i ), i = 1, 2, · · · , n
′

18 end

Algorithm 1 computes the approximations of DqI-DTRS from
the whole decision information system in a batch, which we call
it a static algorithm of DqI-DTRS and abbreviate it as SA-I . In
algorithm 1, steps 2–4 compute all equivalence classes generated
by C in U ′ and with the time complexity of O(|U ′|2 × |C |). Steps
5–17 compute the upper and lower approximations of all decision
classes by formulas (2.1) and (2.2), with the time complexity
of O(|U ′/D| × |U ′/C |), where |U ′/D| and |U ′/C | refer to the
number of decision classes and equivalence classes in universe
U ′, respectively. Therefore, the time complexity of algorithm 1 is
O(|U ′|2 × |C | + |U ′/D| × |U ′/C |).

Algorithm 2 computes the approximations of DqII-DTRS, which
we call it a static algorithm of DqII-DTRS and abbreviate it as
SA-II . In algorithm 2, steps 2–4 compute all equivalence classes
generated by C in U ′, with the time complexity of O(|U ′|2 × |C |).
Steps 5–17 compute the upper and lower approximations of
all decision classes by formulas (2.3) and (2.4), with the time

Algorithm 2: A static algorithm of DqII-DTRS (SA-II)

Input : A decision information system S
′

= (U
′

, A, V
′

, f
′

), all
decision classes D

′

i , i = 1, 2, · · · , n
′

and parameters α, k.

Output : R
II
k (D

′

i ) and RII
(α,β)(D

′

i ), i = 1, 2, · · · , n
′

.
1 begin
2 for each x ∈ U

′ do
3 compute: all equivalence class E

′

j , j = 1, 2, · · · ,m
′

generated by C in U
′

4 end
5 for i = 1, 2, · · · , n

′ do
6 Init: R

II
k (D

′

i )← ∅, R
II
(α,β)(D

′

i )← ∅
7 for j = 1, 2, · · · ,m

′ do
8 compute: g(E ′j ,D

′

i ) = |E
′

j ∩ D
′

i |

9 compute: P(D′i |E
′

j ) = |E
′

j ∩ D
′

i |/|E
′

j |

10 if g(E ′j ,D
′

i ) > k then
11 R

II
k (D

′

i )← R
II
k (D

′

i ) ∪ E
′

j // Compute the
upper approximation of DqII-DTRS by formula
2.3

12 end
13 if P(D′i |E

′

j ) ≥ α then
14 RII

(α,β)(D
′

i )← RII
(α,β)(D

′

i ) ∪ E
′

j // Compute the
lower approximation of DqII-DTRS by formula
2.4

15 end
16 end
17 end

return : R
II
k (D

′

i ), R
II
(α,β)(D

′

i ), i = 1, 2, · · · , n
′

18 end

complexity of O(|U ′/D| × |U ′/C |). Hence, the time complexity of
algorithm 2 is O(|U ′|2 × |C | + |U ′/D| × |U ′/C |).

5.2. Incremental algorithms for updating approximations of Dq-
DTRS with the sequential variation of objects

Based on the prior knowledge of time t , we propose incre-
mental approximation updating algorithms of DqI-DTRS and DqII-
DTRS models with the sequential insertion and deletion of objects
at time t + 1, respectively.

5.2.1. Incremental updating algorithms for DqI-DTRS and DqII-DTRS
with the sequential insertion of objects

Based on the incremental updating mechanisms in Sections 3.1
and 3.2, the incremental algorithms of two Dq-DTRS models are
first designed in dynamic decision systems with the sequential
insertion of objects. Detailed are shown in algorithms 3 and 4.

Algorithm 3 incrementally computes the approximations of
DqI-DTRS with the sequential insertion of objects, which we
call it an incremental sequential insertion algorithm of DqI-DTRS
and abbreviate it as ISIA-I . In algorithm 3, step 3 computes all
equivalence classes generated by C in U ∪ {x+}, with the time
complexity of O(|U/C |), where |U/C | refers to the number of
equivalence classes in universe U . Steps 5–44 update the upper
and lower approximations of decision classes derived from time
t by Propositions 3.1.2 and 3.1.3, with the time complexity of
O(|U/D|), where |U/D| refers to the number of decision classes
in universe U . Steps 45–58 compute the approximations of the
new decision class by Proposition 3.1.4, with the time complexity
of O(|U ′/C |), where |U ′/C | refers to the number of equivalence
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Algorithm 3: An incremental sequential insertion algorithm of DqI-DTRS (ISIA-I)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqI-DTRS: RI(α,β)(Di) and RIk(Di), i = 1, 2, · · · , n;
(2) The inserted sequential object set ∆U0 of time t + 1, parameters β, k

Output : The updated approximations after the insertion of ∆U0: RI(α,β)(D
′

i ) and RIk(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 for x+ ∈ ∆U0 do
3 compute:All equivalence classes E

′

1, E
′

2, · · · , E
′

m′
of time t + 1; let x+ ∈ E

′

h and Eh = E
′

h − x+ .

4 flag ← true
5 for i = 1, 2, · · · , n do
6 if ∀x ∈ Di, f (x+, d) = f (x, d) then
7 D

′

i ← Di ∪ {x+}
8 flag ← false

9 if Eh ⊆ RI(α,β)(Di) then
10 RI(α,β)(D

′

i )← RI(α,β)(Di) ∪ {x+}
11 else
12 if P(D

′

i |E
′

h) > β then
13 RI(α,β)(D

′

i )← RI(α,β)(Di) ∪ E
′

h // Update the upper approximation of the original changed decision class by Proposition 3.1.2
14 else
15 RI(α,β)(D

′

i )← RI(α,β)(Di)
16 end
17 end
18 if Eh ⊆ RIk(Di) then
19 RIk(D

′

i )← RIk(Di) ∪ {x+} //Update the lower approximation of the original changed decision class by Proposition 3.1.2
20 else
21 RIk(D

′

i )← RIk(Di)
22 end
23 else
24 D

′

i ← Di

25 if Eh ⊆ RI(α,β)(Di) then
26 if P(D

′

i |E
′

h) > β then
27 RI(α,β)(D

′

i )← RI(α,β)(Di) ∪ {x+} //Update the upper approximation of the original unchanged decision class by Proposition 3.1.3
28 else
29 RI(α,β)(D

′

i )← RI(α,β)(Di)− Eh
30 end
31 else
32 RI(α,β)(D

′

i )← RI(α,β)(Di)
33 end
34 if Eh ⊆ RIk(Di) then
35 if g(E

′

h,D
′

i ) ≤ k then
36 RIk(D

′

i )← RIk(Di) ∪ {x+} //Update the lower approximation of the original unchanged decision class by Proposition 3.1.3
37 else
38 RIk(D

′

i )← RIk(Di)− Eh
39 end
40 else
41 RIk(D

′

i )← RIk(Di)
42 end
43 end
44 end
45 if flag then
46 D

′

n+1 ← {x
+
}

47 if P(D
′

n+1|E
′

h) > β then

48 RI(α,β)(D
′

n+1)← E
′

h //Compute the upper approximation of the new decision class by Proposition 3.1.4
49 else
50 RI(α,β)(D

′

n+1)← ∅
51 end
52 RIk(D

′

n+1)← ∅

53 for j = 1, 2, · · · ,m
′
do

54 if g(E
′

j ,D
′

n+1) ≤ k then

55 RIk(D
′

n+1)← RIk(D
′

n+1) ∪ E
′

j //Compute the lower approximation of the new decision class by Proposition 3.1.4
56 end
57 end
58 end
59 end

return : RI(α,β)(D
′

i ), R
I
k(D
′

i ), i = 1, 2, · · · , n
′

60 end
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Algorithm 4: An incremental sequential insertion algorithm of DqII-DTRS (ISIA-II)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqI-DTRS: RIIk (Di) and RII(α,β)(Di), i = 1, 2, · · · , n;
(2) The inserted sequential object set ∆U0 of time t + 1, parameters k, α

Output : The updated approximations after the insertion of ∆U0: RIIk (D
′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 for x+ ∈ ∆U0 do
3 compute: All equivalence classes E

′

1, E
′

2, · · · , E
′

m′
of time t + 1; let x+ ∈ E

′

h and Eh = E
′

h − x+ .

4 flag ← true
5 for i = 1, 2, · · · , n do
6 if ∀x ∈ Di, f (x+, d) = f (x, d) then
7 D

′

i ← Di ∪ {x+}
8 flag ← false

9 if Eh ⊆ RIIk (Di) then
10 RIIk (D

′

i )← RIIk (Di) ∪ {x+}
11 else
12 if g(E

′

h,D
′

i ) > k then
13 RIIk (D

′

i )← RIIk (Di) ∪ E
′

h //Update the upper approximation of the original changed decision class by Proposition 3.2.1
14 else
15 RIIk (D

′

i )← RIIk (Di)
16 end
17 end
18 if Eh ⊆ RII(α,β)(Di) then

19 RII(α,β)(D
′

i )← RII(α,β)(Di) ∪ {x+} //Update the lower approximation of the original changed decision class by Proposition 3.2.1
20 else
21 if P(D

′

i |E
′

h) ≥ α then
22 RII(α,β)(D

′

i )← RII(α,β)(Di) ∪ E
′

h
23 else
24 RII(α,β)(D

′

i )← RII(α,β)(Di)
25 end
26 end
27 else
28 D

′

i ← Di

29 if Eh ⊆ RIIk (Di) then
30 RIIk (D

′

i ) = RIIk (Di) ∪ {x+}
31 else
32 RIIk (D

′

i ) = RIIk (Di) //Update the upper approximation of the original unchanged decision class by Proposition 3.2.2
33 end
34 if Eh ⊆ RII(α,β)(Di) then

35 if P(D
′

i |E
′

h) ≥ α then
36 RII(α,β)(D

′

i )← RII(α,β)(Di) ∪ {x+}
37 else
38 RII(α,β)(D

′

i )← RII(α,β)(Di)− Eh //Update the lower approximation of the original unchanged decision class by Proposition 3.2.2
39 end
40 else
41 RII(α,β)(D

′

i )← RII(α,β)(Di)
42 end
43 end
44 end
45 if flag then
46 D

′

n+1 ← {x
+
}

47 if g(E
′

h,D
′

n+1) > k then

48 RIIk (D
′

n+1)← E
′

h //Compute the upper approximation of the new decision class by Proposition 3.2.3
49 else
50 RIIk (D

′

n+1)← ∅
51 end
52 if P(D

′

n+1|E
′

h) ≥ α then
53 RII(α,β)(D

′

n+1)← E
′

h //Compute the lower approximation of the new decision class by Proposition 3.2.3
54 else
55 RII(α,β)(D

′

n+1)← ∅
56 end
57 end
58 end

return : RIIk (D
′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n
′

59 end
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Algorithm 5: An incremental sequential deletion algorithm of DqI-DTRS (ISDA-I)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqI-DTRS: RI(α,β)(Di) and RIk(Di), i = 1, 2, · · · , n;
(2) The deleted sequential object set ∆U0 of time t + 1, parameters β, k

Output : The updated approximations after the deletion of ∆U0: RI(α,β)(D
′

i ) and RIk(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 for x− ∈ ∆U0 do
3 compute: All equivalence classes E

′

1, E
′

2, · · · , E
′

m′
at time t + 1; let x− ∈ Eh and E

′

h = Eh − x− .

4 for i = 1, 2, · · · , n do
5 if ∀x ∈ Di, f (x−, d) = f (x, d) then
6 D

′

i ← Di − {x−}

7 if Eh ⊆ RI(α,β)(Di) then
8 if P(D

′

i |E
′

h) > β then
9 RI(α,β)(D

′

i )← RI(α,β)(Di)− {x−} //Update the upper approximation of the original changed decision class by Proposition 4.1.1
10 else
11 RI(α,β)(D

′

i )← RI(α,β)(Di)− Eh
12 end
13 else
14 RI(α,β)(D

′

i )← RI(α,β)(Di)
15 end
16 if Eh ⊆ RIk(Di) then
17 RIk(D

′

i )← RIk(Di)− {x−} //Update the lower approximation of the original changed decision class by Proposition 4.1.1
18 else
19 RIk(D

′

i )← RIk(Di)
20 end
21 else
22 D

′

i ← Di

23 if Eh ⊆ RI(α,β)(Di) then
24 RI(α,β)(D

′

i )← RI(α,β)(Di)− {x−}
25 else
26 if P(D

′

i |E
′

h) > β then
27 RI(α,β)(D

′

i )← RI(α,β)(Di) ∪ E
′

h //Update the upper approximation of the original unchanged decision class by Proposition 4.1.2
28 else
29 RI(α,β)(D

′

i )← RI(α,β)(Di)
30 end
31 end
32 if Eh ⊆ RIk(Di) then
33 RIk(D

′

i )← RIk(Di)− {x−}
34 else
35 if g(E

′

h,D
′

i ) ≤ k then
36 RIk(D

′

i )← RIk(Di) ∪ E
′

h //Update the lower approximation of the original unchanged decision class by Proposition 4.1.2
37 else
38 RIk(D

′

i )← RIk(Di)
39 end
40 end
41 end
42 end
43 end

return : RI(α,β)(D
′

i ), R
I
k(D
′

i ), i = 1, 2, · · · , n
′

44 end

classes in universe U ′. Therefore, the time complexity of algo-
rithm 3 is O(|∆U0|×(|U/C |+|U/D|+|U ′/C |)), where |∆U0| refers
to the number of objects in ∆U0.

Algorithm 4 incrementally computes the approximations of
DqII-DTRS with the sequential insertion of objects, which we call
it an incremental sequential insertion algorithm of DqII-DTRS and
abbreviate it as ISIA-II . In algorithm 4, step 3 computes all equiva-
lence classes generated by C in U∪{x+}, and its time complexity is
O(|U/C |). Steps 5–44 update the upper and lower approximations
of decision classes derived from time t by Propositions 3.2.1 and
3.2.2, with the time complexity ofO(|U/D|). Steps 45–57 compute
the approximations of the new decision class by Proposition 3.2.3,
with the time complexity of O(1). Therefore, the time complexity
of algorithm 4 is O(|∆U0| × (|U/C | + |U/D| + 1)).

Contrasting algorithm 3 (ISIA-I) and algorithm 4 (ISIA-II), we
can find that the complexity of computing the upper approx-
imation of the new decision class in steps 46–51 of DqI-DTRS
and DqII-DTRS is the same. But the complexity of computing
the lower approximation of the new decision class in DqI-DTRS
and DqII-DTRS models is different. In steps 52–56 of ISIA-II , only
the equivalence class containing x+ may belong to the lower
approximation of the new decision class of DqII-DTRS. However,
in steps 52–57 of ISIA-I , in addition to the equivalence class con-
taining x+, other equivalence classes may also belong to the lower
approximation of the new decision class of DqI-DTRS. Therefore,
the computation time of DqI-DTRS is more complex than that
of DqII-DTRS because of the cyclic judgment of all the current
equivalence classes.
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5.2.2. Incremental updating algorithms for DqI-DTRS and DqII-DTRS
with the sequential deletion of objects

Incremental algorithms 5 and 6 for updating approximations
of DqI-DTRS and DqII-DTRS are designed in decision systems with
the sequential deletion of objects at time t + 1, respectively.

Algorithm 5 incrementally updates two approximations of
DqI-DTRS with the sequential deletion of objects, which we call
it an incremental sequential deletion algorithm of DqI-DTRS and
abbreviate it as ISDA-I . In algorithm 5, step 3 computes all equiva-
lence classes generated by C in U−{x−}, with the time complexity
of O(|U/C |). Steps 4–42 compute two approximations of DqI-
DTRS by Propositions 4.1.1 and 4.1.2, and the time complexity is
O(|U/D|). So the time complexity of algorithm 5 is O(|∆U0| ×

(|U/C | + |U/D|)).
Algorithm 6 incrementally updates two approximations of

DqII-DTRS with the sequential deletion of objects, which we call
it an incremental sequential deletion algorithm of DqII-DTRS and
abbreviate it as ISDA-II . In algorithm 6, step 3 computes all equiv-
alence classes generated by C in U−{x−}, and its time complexity
is O(|U/C |). Steps 4–42 compute two approximations of DqII-
DTRS by Propositions 4.2.1 and 4.2.2, with the time complexity
of O(|U/D|). So the time complexity of algorithm 6 is O(|∆U0| ×

(|U/C | + |U/D|)).

Remark 1. In practical applications, sometimes objects are
deleted from and inserted into data simultaneously in a certain
order. Under such circumstances, we choose the algorithms (ISIA-
I , ISIA-II , ISDA-I and ISDA-II) that meets the actual needs to
update the approximations of Dq-DTRS according to the order of
object change.

5.3. Incremental algorithms for updating approximations of Dq-
DTRS with the batch variation of objects

Based on the incremental updating mechanisms for the case
of the batch insertion of objects in Section 3.3, the incremental
batch insertion algorithms of DqI-DTRS and DqII-DTRS models
are designed in dynamic decision systems. Detailed are shown in
algorithms 7 and 8.

Algorithm 7 incrementally updates the approximations of DqI-
DTRS with the batch insertion of objects, which we call it an
incremental batch insertion algorithm of DqI-DTRS and abbre-
viate it as IBIA-I . In algorithm 7, step 2 computes the decision
partition and conditional partition on the newly inserted object
set ∆U , with the time complexity of O(|∆U |2(|D| + |C |)). Steps
3–6 update the decision partition and conditional partition on U ′,
with the time complexity of O(|U/D| × |∆U/D| × |D| + |U/C | ×
|∆U/C | × |C |), where |∆U/D| and |∆U/C | refer to the number
of decision classes and equivalence classes in ∆U , respectively.
Steps 7–35 update the approximations of the original changed
decision classes by Proposition 3.3.1, with the time complexity
of O(s × |∆U/C |), where s refers to the number of the original
changed decision classes in universe U . Steps 36–52 update the
approximations of the original unchanged decision classes by
Proposition 3.3.2, with the time complexity of O((n−s)×|∆U/C |),
where (n − s) refers to the number of the original unchanged
decision classes in universe U . Steps 53–55 compute the ap-
proximations of the newly inserted decision classes by formulas
(2.1)–(2.2), with the time complexity of O((u−s)×|U ′/C |), where
(u−s) refers to the number of the newly inserted decision classes.
Therefore, the time complexity of algorithm 7 is O(|∆U |2(|D| +
|C |)+ |U/D| × |∆U/D| × |D| + |U/C | × |∆U/C | × |C | + |U/D| ×
|∆U/C | + (u− s)× |U ′/C |).

Algorithm 8 incrementally updates the approximations of
DqII-DTRS with the batch insertion of objects, which we call
it an incremental batch insertion algorithm of DqII-DTRS and

abbreviate it as IBIA-II . In algorithm 8, step 2 computes the
decision partition and conditional partition on ∆U , with the
time complexity of O(|∆U |2(|D| + |C |)). Steps 3–6 update the
decision partition and conditional partition on U ′, with the time
complexity of O(|U/D| × |∆U/D| × |D| + |U/C | × |∆U/C | × |C |).
Steps 7–35 update the approximations of the original changed
decision classes by Proposition 3.3.3, with the time complexity of
O(s × |∆U/C |). Steps 36–53 update the approximations of the
original unchanged decision classes by Proposition 3.3.4, with
the time complexity of O((n − s) × s′), where s′ refers to the
number of the original changed equivalence classes in universe U .
Steps 54–56 compute the approximations of the newly inserted
decision classes by formulas (2.3)–(2.4), with the time complexity
of O((u−s)×|U ′/C |). Therefore, the time complexity of algorithm
8 is O(|∆U |2(|D|+|C |)+|U/D|×|∆U/D|×|D|+|U/C |×|∆U/C |×
|C | + s× |∆U/C | + (n− s)× s′ + (u− s)× |U ′/C |).

Based on the incremental updating mechanisms for the case of
the batch insertion of objects in Section 4.3, the incremental batch
deletion algorithms of DqI-DTRS and DqII-DTRS are developed in
the dynamic decision systems, respectively. Detailed are shown
in algorithms 9 and 10.

Algorithm 9 incrementally updates the approximations of DqI-
DTRS with the batch deletion of objects, which we call it an
incremental batch deletion algorithm of DqI-DTRS and abbreviate
it as IBDA-I . In algorithm 9, step 2 computes the decision partition
and conditional partition on the deleted object set ∆U , with the
time complexity of O(|∆U |2(|D| + |C |)). Steps 3–4 update the
decision partition and conditional partition on U ′, with the time
complexity ofO(|U/D|×|∆U/D|×|D|+|U/C |×|∆U/C |×|C |). Step
5 removes the original completely deleted equivalence classes
from the upper and lower approximations of the original decision
classes corresponding to the current decision classes in U ′, with
the time complexity of O(v − s′), where v − s′ refers to the
number of the original completely deleted equivalence classes.
Steps 6–31 update the approximations of the original changed
decision classes by Proposition 4.3.1, with the time complexity
of O(s × s′), where s and s′ refer to the number of the original
changed decision classes and the original changed equivalence
classes, respectively. Steps 32–45 update the approximations of
the original unchanged decision classes by Proposition 4.3.2, with
the time complexity of O((n−u)× s′), where n−u and s′ refer to
the number of the original unchanged decision classes and the
original changed equivalence classes, respectively. So the time
complexity of algorithm 9 isO(|∆U |2(|D|+|C |)+|U/D|×|∆U/D|×
|D| + |U/C | × |∆U/C | × |C | + v + (n− u+ s− 1)× s′).

Algorithm 10 incrementally updates the approximations of
DqII-DTRS with the batch deletion of objects, which we call
it an incremental batch deletion algorithm of DqII-DTRS and
abbreviate it as IBDA-II . In algorithm 10, step 2 computes the
decision partition and conditional partition on ∆U , with the time
complexity of O(|∆U |2(|D| + |C |)). Steps 3–4 update the original
decision partition and conditional partition on U ′, with the time
complexity of O(|U/D| × |∆U/D| × |D| + |U/C | × |∆U/C | ×
|C |). Step 5 removes the original completely deleted equivalence
classes from the approximations of the original decision classes
corresponding to the current decision classes in U ′, with the time
complexity of O(v − s′). Steps 6–31 update the approximations
of the original changed decision classes by Proposition 4.3.3,
with the time complexity of O(s × s′). Steps 32–49 update the
approximations of the original unchanged decision classes by
Proposition 4.3.4, with the time complexity of O((n − u) × s′).
So the time complexity of algorithm 10 is O(|∆U |2(|D| + |C |) +
|U/D|×|∆U/D|×|D|+|U/C |×|∆U/C |×|C |+v+(n−u+s−1)×s′).

Remark 2. In practical applications, sometimes objects are
deleted from and inserted into data simultaneously. Under such
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Algorithm 6: An incremental sequential deletion algorithm of DqII-DTRS (ISDA-II)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqII-DTRS: RIIk (Di) and RII(α,β)(Di), i = 1, 2, · · · , n;
(2) The deleted sequential object set ∆U0 of time t + 1, parameters k, α

Output : The updated approximations after the deletion of ∆U0: RIIk (D
′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 for x− ∈ ∆U0 do
3 compute: All equivalence classes E

′

1, E
′

2, · · · , E
′

m′
of time t + 1; let x− ∈ Eh and E

′

h = Eh − x− .

4 for i = 1, 2, · · · , n do
5 if ∀x ∈ Di, f (x−, d) = f (x, d) then
6 D

′

i ← Di − {x−}

7 if Eh ⊆ RIIk (Di) then
8 if g(E

′

h,D
′

i ) > k then
9 RI(α,β)(D

′

i )← RI(α,β)(Di)− {x−} //Update the upper approximation of the original changed decision class by Proposition 4.2.1
10 else
11 RIIk (D

′

i )← RIIk (Di)− Eh
12 end
13 else
14 RIIk (D

′

i )← RIIk (Di)
15 end
16 if Eh ⊆ RII(α,β)(Di) then

17 if P(D
′

i |E
′

h) ≥ α then
18 RII(α,β)(D

′

i )← RII(α,β)(Di)− {x−} //Update the lower approximation of the original changed decision class by Proposition 4.2.1
19 else
20 RII(α,β)(D

′

i )← RII(α,β)(Di)− Eh
21 end
22 else
23 RII(α,β)(D

′

i )← RII(α,β)(Di)
24 end
25 else
26 D

′

i ← Di

27 if Eh ⊆ RIIk (Di) then
28 RIIk (D

′

i )← RIIk (Di)− {x−} //Update the upper approximation of the original unchanged decision class by Proposition 4.2.2
29 else
30 RIIk (D

′

i )← RIIk (Di)
31 end
32 if Eh ⊆ RII(α,β)(Di) then

33 RII(α,β)(D
′

i )← RII(α,β)(Di)− {x−}
34 else
35 if P(D

′

i |E
′

h) ≥ α then
36 RII(α,β)(D

′

i )← RII(α,β)(Di) ∪ E
′

h //Update the lower approximation of the original unchanged decision class by Proposition 4.2.2
37 else
38 RII(α,β)(D

′

i )← RII(α,β)(Di)
39 end
40 end
41 end
42 end
43 end

return : RIIk (D
′

i ), R
II
(α,β)(D

′

i ), i = 1, 2, · · · , n
′

44 end

circumstances, considering the influence of data storage on com-
putational performance, we can update the approximations of
Dq-DTRS with incremental batch deletion algorithms (IBDA-I and
IBDA-II), then get the final approximations with incremental
batch insertion algorithms (IBIA-I and IBIA-II).

6. Experimental evaluation

In this section, we evaluate the performances of our proposed
incremental algorithms for updating the approximations of Dq-
DTRS with the sequential and batch variations of objects on
several category data sets derived from UCI [48]. Static algorithms
(SA-I and SA-II) are used as benchmarks to verify the computa-
tional feasibility and effectiveness of the proposed incremental

algorithms of DqI-DTRS and DqII-DTRS models. In dynamic deci-
sion systems with the sequential and batch variations (insertion
and deletion) of objects, the computational efficiency of incre-
mental sequential insertion, batch insertion, sequential deletion
and batch deletion algorithms of DqI-DTRS and DqII-DTRS is ver-
ified by comparing them with the corresponding static algorithms
SA-I and SA-II , respectively.

6.1. Experimental design

Experiments are performed on a personal computer with
2.6 GHz CPU, 12.0 GB of memory and 64-bit Windows 10, and
have been implemented through Java 8. Six data sets are down-
loaded from UCI, detailed information is shown in Table 7.
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Algorithm 7: An incremental batch insertion algorithm of DqI-DTRS (IBIA-I)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqI-DTRS: RI(α,β)(Di) and RIk(Di), i = 1, 2, · · · , n;
(2) The newly inserted object set ∆U of time t + 1, parameters β, k

Output : The updated approximations after the insertion of ∆U: RI(α,β)(D
′

i ) and RIk(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 Compute: ∆U/D = {M1,M2, · · · ,Ms,Ms+1, · · · ,Mu} and ∆U/C = {N1,N2, · · · ,Ns′

,N
s′ +1

, · · · ,Nv}.

3 Update: U
′
/D = {D

′

1,D
′

2, · · · ,D
′

s,D
′

s+1, · · · ,D
′

n,D
′

n+1, · · · ,D
′

n+u−s}, where D
′

i = Di ∪Mi(i = 1, 2, · · · , s), D
′

i = Di(i = s+ 1, s+ 2, · · · , n),

4 D
′

i = Mi−n+s(i = n+ 1, n+ 2, · · · , n+ u− s);

5 U
′
/C = {E

′

1, E
′

2, · · · , E
′

s′
, E
′

s′ +1
, · · · , E

′

m, E
′

m+1, · · · , E
′

m+v−s′
}, where E

′

j = Ej ∪ Nj(j = 1, 2, · · · , s
′
), E
′

j = Ej(j = s
′
+ 1, s

′
+ 2, · · · ,m),

6 E
′

j = N
j−m+s′

(j = m+ 1,m+ 2, · · · ,m+ v − s
′
).

7 for i = 1, 2, · · · , s do
8 for j = 1, 2, · · · , s

′
do

9 if Ej ⊆ RI(α,β)(Di) then
10 if P(D

′

i |E
′

j ) > β then

11 RI(α,β)(D
′

i )← RI(α,β)(Di) ∪ Nj //Update the upper approximation of the original changed decision class by Proposition 3.3.1
12 else
13 RI(α,β)(D

′

i )← RI(α,β)(Di)− Ej
14 end
15 else
16 if P(D

′

i |E
′

j ) > β then

17 RI(α,β)(D
′

i )← RI(α,β)(Di) ∪ E
′

j
18 else
19 RI(α,β)(D

′

i )← RI(α,β)(Di)
20 end
21 end
22 if Ej ⊆ RIk(Di) then
23 if g(E

′

j ,D
′

i ) ≤ k then

24 RIk(D
′

i )← RIk(Di) ∪ Nj //Update the lower approximation of the original changed decision class by Proposition 3.3.1
25 else
26 RIk(D

′

i )← RIk(Di)− Ej
27 end
28 else
29 RIk(D

′

i )← RIk(Di)
30 end
31 end
32 for j = m+ 1,m+ 2, · · · ,m+ v − s

′
do

33 Update RI(α,β)(D
′

i ) and RIk(D
′

i ) according to the conclusion (3) of Proposition 3.3.1
34 end
35 end
36 for i = s+ 1, s+ 2, · · · , n do
37 for j = 1, 2, · · · , s

′
do

38 if Ej ⊆ RI(α,β)(Di) then
39 if P(D

′

i |E
′

j ) > β then

40 RI(α,β)(D
′

i )← RI(α,β)(Di) ∪ Nj
41 else
42 RI(α,β)(D

′

i )← RI(α,β)(Di)− Ej //Update the upper approximation of the original unchanged decision class by Proposition 3.3.2
43 end
44 else
45 RI(α,β)(D

′

i )← RI(α,β)(Di)
46 end
47 Update RIk(D

′

i ) by steps 22-30. //Update the lower approximation of the original unchanged decision class by Proposition 3.3.2
48 end
49 for j = m+ 1,m+ 2, · · · ,m+ v − s

′
do

50 Update RIk(D
′

i ) according to the conclusion (3) of Proposition 3.3.2
51 end
52 end
53 for i = n+ 1, n+ 2, · · · , n+ u− s do
54 Compute RI(α,β)(D

′

i ) and RIk(D
′

i ) by formulas 2.1-2.2
55 end

return : RI(α,β)(D
′

i ), R
I
k(D
′

i ), i = 1, 2, · · · , n
′
(n
′
= n+ u− s)

56 end

In both the sequential variation of objects and the batch vari-
ation of objects, the dynamic processes for the cases of inserting

and deleting objects in data sets from t to t + 1 are presented as
follows:



Y. Guo, E.C.C. Tsang, M. Hu et al. / Knowledge-Based Systems 189 (2020) 105082 21

Algorithm 8: An incremental batch insertion algorithm of DqII-DTRS (IBIA-II)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqI-DTRS: RIIk (Di) and RII(α,β)(Di), i = 1, 2, · · · , n;
(2) The newly inserted object set ∆U of time t + 1, parameters k, α

Output : The updated approximations after the insertion of ∆U: RIIk (D
′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 Compute: ∆U/D = {M1,M2, · · · ,Ms,Ms+1, · · · ,Mu} and ∆U/C = {N1,N2, · · · ,Ns′

,N
s′ +1

, · · · ,Nv}.

3 Update: U
′
/D = {D

′

1,D
′

2, · · · ,D
′

s,D
′

s+1, · · · ,D
′

n,D
′

n+1, · · · ,D
′

n+u−s}, where D
′

i = Di ∪Mi(i = 1, 2, · · · , s), D
′

i = Di(i = s+ 1, s+ 2, · · · , n),

4 D
′

i = Mi−n+s(i = n+ 1, n+ 2, · · · , n+ u− s);

5 U
′
/C = {E

′

1, E
′

2, · · · , E
′

s′
, E
′

s′ +1
, · · · , E

′

m, E
′

m+1, · · · , E
′

m+v−s′
}, where E

′

j = Ej ∪ Nj(j = 1, 2, · · · , s
′
), E
′

j = Ej(j = s
′
+ 1, s

′
+ 2, · · · ,m),

6 E
′

j = N
j−m+s′

(j = m+ 1,m+ 2, · · · ,m+ v − s
′
).

7 for i = 1, 2, · · · , s do
8 for j = 1, 2, · · · , s

′
do

9 if Ej ⊆ RIIk (Di) then
10 RIIk (D

′

i )← RIIk (Di) ∪ Nj // Update the upper approximation of the original changed decision class by Proposition 3.3.3
11 else
12 if g(E

′

j ,D
′

i ) > k then

13 RIIk (D
′

i )← RIIk (Di) ∪ E
′

j
14 else
15 RIIk (D

′

i )← RIIk (Di)
16 end
17 end
18 if Ej ⊆ RII(α,β)(Di) then

19 if P(D
′

i |E
′

j ) ≥ α then

20 RII(α,β)(D
′

i )← RII(α,β)(Di) ∪ Nj // Update the lower approximation of the original changed decision class by Proposition 3.3.3
21 else
22 RII(α,β)(D

′

i )← RII(α,β)(Di)− Ej
23 end
24 else
25 if P(D

′

i |E
′

j ) ≥ α then

26 RII(α,β)(D
′

i )← RII(α,β)(Di) ∪ E
′

j
27 else
28 RII(α,β)(D

′

i )← RII(α,β)(Di)
29 end
30 end
31 end
32 for j = m+ 1,m+ 2, · · · ,m+ v − s

′
do

33 Update RIIk (D
′

i ) and RII(α,β)(D
′

i ) according to the conclusion (3) of Proposition 3.3.3
34 end
35 end
36 for i = s+ 1, s+ 2, · · · , n do
37 for j = 1, 2, · · · , s

′
do

38 if Ej ⊆ RIIk (Di) then
39 RIIk (D

′

i )← RIIk (Di) ∪ Nj // Update the upper approximation of the original unchanged decision class by Proposition 3.3.4
40 else
41 RIIk (D

′

i )← RIIk (Di)
42 end
43 if Ej ⊆ RII(α,β)(Di) then

44 if P(D
′

i |E
′

j ) ≥ α then

45 RII(α,β)(D
′

i )← RII(α,β)(Di) ∪ Nj

46 else
47 RII(α,β)(D

′

i )← RII(α,β)(Di)− Ej // Update the lower approximation of the original unchanged decision class by Proposition 3.3.4
48 end
49 else
50 RII(α,β)(D

′

i )← RII(α,β)(Di)
51 end
52 end
53 end
54 for i = n+ 1, n+ 2, · · · , n+ u− s do
55 Compute RIIk (D

′

i ) and RII(α,β)(D
′

i ) according to formulas 2.3-2.4
56 end

return : RIIk (D
′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n
′
(n
′
= n+ u− s)

57 end
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Algorithm 9: An incremental batch deletion algorithm of DqI-DTRS (IBDA-I)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqI-DTRS: RI(α,β)(Di) and RIk(Di), i = 1, 2, · · · , n;
(2) The deleted object set ∆U of time t + 1, parameters β, k

Output : The updated approximations after the deletion of ∆U: RI(α,β)(D
′

i ) and RIk(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 Compute: ∆U/D = {M1,M2, · · · ,Ms,Ms+1, · · · ,Mu} and ∆U/C = {N1,N2, · · · ,Ns′

,N
s′ +1

, · · · ,Nv}.

3 Update: U
′
/D = {D

′

1,D
′

2, · · · ,D
′

s,D
′

s+1, · · · ,D
′

n−u+s}, where D
′

i = Di −Mi (i = 1, 2, · · · , s), D
′

i = Di(i = s+ 1, s+ 2, · · · , n− u+ s);

4 U
′
/C = {E

′

1, E
′

2, · · · , E
′

s′
, E
′

s′ +1
, · · · , E

′

m−v+s′
}, where E

′

j = Ej − Nj(j = 1, 2, · · · , s
′
), E
′

j = Ej(j = s
′
+ 1, s

′
+ 2, · · · ,m− v + s

′
).

5 Remove Nw, w = s
′
+ 1, s

′
+ 2, . . . , v from RI(α,β)(Di) and RIk(Di), i = 1, 2, · · · , n− u+ s

6 for i = 1, 2, · · · , s do
7 for j = 1, 2, · · · , s

′
do

8 if Ej ⊆ RI(α,β)(Di) then
9 if P(D

′

i |E
′

j ) > β then

10 RI(α,β)(D
′

i )← RI(α,β)(Di)− Nj //Update the upper approximation of the original changed decision class by Proposition 4.3.1
11 else
12 RI(α,β)(D

′

i )← RI(α,β)(Di)− Ej
13 end
14 else
15 if P(D

′

i |E
′

j ) > β then

16 RI(α,β)(D
′

i )← RI(α,β)(Di) ∪ E
′

j
17 else
18 RI(α,β)(D

′

i )← RI(α,β)(Di)
19 end
20 end
21 if Ej ⊆ RIk(Di) then
22 RIk(D

′

i )← RIk(Di)− Nj
23 else
24 if g(E

′

j ,D
′

i ) ≤ k then

25 RIk(D
′

i )← RIk(Di) ∪ E
′

j //Update the lower approximation of the original changed decision class by Proposition 4.3.1
26 else
27 RIk(D

′

i )← RIk(Di)
28 end
29 end
30 end
31 end
32 for i = s+ 1, s+ 2, · · · , n− u+ s do
33 for j = 1, 2, · · · , s

′
do

34 if Ej ⊆ RI(α,β)(Di) then
35 RI(α,β)(D

′

i )← RI(α,β)(Di)− Nj
36 else
37 if P(D

′

i |E
′

j ) > β then

38 RI(α,β)(D
′

i )← RI(α,β)(Di) ∪ E
′

j //Update the upper approximation of the original unchanged decision class by Proposition 4.3.2
39 else
40 RI(α,β)(D

′

i )← RI(α,β)(Di)
41 end
42 end
43 Update RIk(D

′

i ) by steps 21-29. //Update the lower approximation of the original unchanged decision class by Proposition 4.3.2
44 end
45 end

return : RI(α,β)(D
′

i ), R
I
k(D
′

i ), i = 1, 2, · · · , n
′
(n
′
= n− u+ s)

46 end

(1) In the insertion experiments, we select 50% objects from
each data set as original data sets of time t . At time t + 1, we

Table 7
Data description.
No. Data sets Abbreviation Samples Attributes Classes

1 Chess Che. 3 196 36 2
2 Mushroom Mus. 8 124 22 2
3 Nursery Nur. 12 960 8 5
4 Letter recognition Let. 20 000 16 26
5 Default of credit card

clients
Def. 30 000 23 2

6 Bank marketing Ban. 45 211 16 2

set the inserting ratio from 10% to 100% in steps of 10% from the
remaining objects of each data set.

(2) In the deletion experiments, we select each data set as
original data sets of time t . At time t + 1, we set the deleting
ratio from 5% to 50% in steps of 5% from each original data
set.

For the parameters of DqI-DTRS and DqII-DTRS, considering
the medium error tolerance acceptance level, we first set them
to β = 0.3, k = 2 and α = 0.8. Meanwhile, we give a
detailed analysis of the influence of different performance values
on the computational performances of incremental algorithms in
Section 6.4. In the following Sections 6.2–6.3, the comparative
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Algorithm 10: An incremental batch deletion algorithm of DqII-DTRS (IBDA-II)
Input : (1) The decision information system S = (U, A = C ∪ D, V , f ) of time t , decision classes {D1,D2, · · · ,Dn}, equivalence classes {E1, E2, · · · , Em}, the

upper and lower approximations of DqII-DTRS: RIIk (Di) and RII(α,β)(Di), i = 1, 2, · · · , n;
(2) The deleted object set ∆U of time t + 1, parameters k, α

Output : The updated approximations after the deletion of ∆U: RIIk (D
′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n
′

1 begin
2 Compute: ∆U/D = {M1,M2, · · · ,Ms,Ms+1, · · · ,Mu} and ∆U/C = {N1,N2, · · · ,Ns′

,N
s′ +1

, · · · ,Nv}.

3 Update: U
′
/D = {D

′

1,D
′

2, · · · ,D
′

s,D
′

s+1, · · · ,D
′

n−u+s}, where D
′

i = Di −Mi (i = 1, 2, · · · , s), D
′

i = Di(i = s+ 1, s+ 2, · · · , n− u+ s);

4 U
′
/C = {E

′

1, E
′

2, · · · , E
′

s′
, E
′

s′ +1
, · · · , E

′

m−v+s′
}, where E

′

j = Ej − Nj(j = 1, 2, · · · , s
′
), E
′

j = Ej(j = s
′
+ 1, s

′
+ 2, · · · ,m− v + s

′
).

5 Remove Nw, w = s
′
+ 1, s

′
+ 2, . . . , v from RIIk (D

′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n− u+ s
6 for i = 1, 2, · · · , s do
7 for j = 1, 2, · · · , s

′
do

8 if Ej ⊆ RIIk (Di) then
9 if g(E

′

j ,D
′

i ) > k then

10 RIIk (D
′

i )← RIIk (Di)− Nj
11 else
12 RIIk (D

′

i )← RIIk (Di)− Ej //Update the upper approximation of the original changed decision class by Proposition 4.3.3
13 end
14 else
15 RIIk (D

′

i )← RIIk (Di)
16 end
17 if Ej ⊆ RII(α,β)(Di) then

18 if P(D
′

i |E
′

j ) ≥ α then

19 RII(α,β)(D
′

i )← RII(α,β)(Di)− Nj

20 else
21 RII(α,β)(D

′

i )← RII(α,β)(Di)− Ej
22 end
23 else
24 if P(D

′

i |E
′

j ) ≥ α then

25 RII(α,β)(D
′

i )← RII(α,β)(Di) ∪ E
′

j //Update the lower approximation of the original changed decision class by Proposition 4.3.3
26 else
27 RII(α,β)(D

′

i )← RII(α,β)(Di)
28 end
29 end
30 end
31 end
32 for i = s+ 1, s+ 2, · · · , n− u+ s do
33 for j = 1, 2, · · · , s

′
do

34 if Ej ⊆ RIIk (Di) then
35 RIIk (D

′

i )← RIIk (Di)− Nj //Update the upper approximation of the original unchanged decision class by Proposition 4.3.4
36 else
37 RIIk (D

′

i )← RIIk (Di)
38 end
39 if Ej ⊆ RII(α,β)(Di) then

40 RII(α,β)(D
′

i )← RII(α,β)(Di)− Nj

41 else
42 if P(D

′

i |E
′

j ) ≥ α then

43 RII(α,β)(D
′

i )← RII(α,β)(Di) ∪ E
′

j //Update the lower approximation of the original unchanged decision class by Proposition 4.3.4
44 else
45 RII(α,β)(D

′

i )← RII(α,β)(Di)
46 end
47 end
48 end
49 end

return : RIIk (D
′

i ) and RII(α,β)(D
′

i ), i = 1, 2, · · · , n
′
(n
′
= n− u+ s)

50 end

experiments between incremental algorithms and static algo-
rithms of DqI-DTRS and DqII-DTRS are first carried out.

6.2. Comparisons of static and incremental algorithms of DqI-DTRS
in decision systems with the variation of objects

This subsection evaluates the effectiveness of incremental al-
gorithms of DqI-DTRS with the variation of objects on six data

sets from the perspective of computational time of approxima-
tions of all decision classes. It must be pointed out that compu-
tational time is measured in seconds.

In the case of inserting objects into data, we illustrate the
computational efficiency of the incremental sequential and batch
insertion algorithms of DqI-DTRS (ISIA-I and IBIA-I) by compar-
ing them with the static algorithm of DqI-DTRS (SA-I). Detailed
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Table 8
Comparisons of computational time about the static algorithm and incremental insertion algorithms of DqI-DTRS in inserting objects.
IR (%) Che. Mus. Nur. Let. Def. Ban.

SA-I ISIA-I IBIA-I SA-I ISIA-I IBIA-I SA-I ISIA-I IBIA-I SA-I ISIA-I IBIA-I SA-I ISIA-I IBIA-I SA-I ISIA-I IBIA-I

10 0.136 0.021 0.028 0.460 0.046 0.056 2.660 0.120 0.143 13.012 0.545 0.507 21.669 0.781 1.038 42.107 1.781 1.695
20 0.296 0.027 0.035 0.980 0.107 0.136 5.620 0.310 0.260 21.200 1.319 1.149 25.966 1.796 1.922 52.216 4.297 3.542
30 0.480 0.039 0.041 1.544 0.186 0.194 8.980 0.562 0.510 29.960 2.254 1.803 31.326 3.328 2.865 64.591 7.234 5.798
40 0.686 0.059 0.058 2.170 0.286 0.242 12.481 0.935 0.801 41.189 3.394 3.099 37.576 5.140 4.213 79.388 12.547 8.273
50 0.936 0.075 0.072 2.892 0.396 0.393 16.574 1.452 1.256 54.084 5.002 4.098 44.966 7.843 5.808 96.873 19.031 11.474
60 1.216 0.091 0.083 3.664 0.560 0.515 20.794 2.124 1.651 68.772 6.939 5.036 53.419 11.093 7.127 116.951 27.703 15.021
70 1.676 0.123 0.111 4.504 0.825 0.763 25.140 2.949 1.929 85.616 9.047 6.021 63.200 15.187 8.960 139.982 40.016 18.391
80 2.076 0.139 0.134 5.394 1.066 0.935 29.670 4.000 2.223 103.293 11.595 7.054 74.325 20.187 10.540 167.638 55.516 21.734
90 2.446 0.151 0.142 6.380 1.346 1.288 34.330 5.223 2.542 124.252 14.809 8.178 86.669 26.390 12.257 198.185 70.531 25.381

100 2.880 0.171 0.167 7.510 1.746 1.462 39.100 6.690 2.888 147.429 18.473 9.326 100.685 32.890 13.986 234.091 88.328 29.519

Fig. 1. Comparisons of runtime in static and incremental insertion algorithms of DqI-DTRS versus different inserting ratios.

experimental results are shown in Table 8, where IR denotes the
inserting ratio.

Table 8 shows that in comparison with SA-I , both ISIA-I and
IBIA-I greatly reduce the runtime of computing approximations
from each data set.

First, we compare the performance of ISIA-I and SA-I to find
a better way to update the approximations of DqI-DTRS in the
case of the sequential insertion of objects. On data set Che., the
runtime of ISIA-I shows a decrease up to 15.44%, 9.12%, 8.13%,
8.60%, 8.01%, 7.48%, 7.34%, 6.70%, 6.17%, 5.94% of that of SA-I
versus different inserting ratios, respectively. On the remaining
five data sets Mus., Nur., Let., Def. and Ban., the runtime of ISIA-I
is reduced to 23.25%, 17.11%, 12.53%, 32.67% and 37.73% at least
of the time of SA-I at inserting ratio 100%, respectively. On the
remaining five data sets, the runtime of ISIA-I is reduced by up
to 10.00%, 4.51%, 4.19%, 3.60% and 4.23% of the time of SA-I at
inserting ratio 10%, respectively. The above results imply that
ISIA-I updates knowledge faster than SA-I on data sets with the
sequential insertion of many objects.

Then we compare the performance of IBIA-I , ISIA-I and SA-I
to find a better way to update the approximations of DqI-DTRS in
the case of the batch insertion of objects. At each inserting ratio
on each data set, the computational time of IBIA-I is less than that
of SA-I . On the six data sets, the runtime of IBIA-I is reduced by up

to 5.80%, 11.15%, 4.63%, 3.90%, 4.79% and 4.03% of the time of SA-
I at the corresponding inserting ratios 100%, 40%, 20%, 10%, 10%,
10%, respectively. The performance of IBIA-I is far better than that
of SA-I . Then we compare the performance of IBIA-I and ISIA-I .
In the ten experiments of the above six data sets, the number of
times that IBIA-I performs better than ISIA-I is 7, 7, 9, 10, 8 and
10, respectively. On Che. and Mus., the performance of IBIA-I is
slightly better than that of ISIA-I . On Nur., IBIA-I performs better
than ISIA-I . On Let., Def. and Ban., the performance of IBIA-I is far
better than that of ISIA-I . So in dynamic data sets with the batch
insertion of objects, our optimal choice is IBIA-I for calculating
the upper and lower approximations of DqI-DTRS.

More intuitive comparisons are shown in Fig. 1. Fig. 1 depicts
the detailed changes of the runtime of static and incremental
algorithms of DqI-DTRS (SA-I , ISIA-I and IBIA-I) with the in-
crease of inserting ratios. Obviously, at each inserting ratio, the
computational speed of ISIA-I and IBIA-I is faster than that of
SA-I . Moreover, on each data set with the increase of the in-
serting ratio, the computational time of SA-I increases sharply,
that of ISIA-I and IBIA-I increases more slowly. In addition, IBIA-I
performs better than ISIA-I in many cases.

Therefore, incremental insertion algorithms ISIA-I and IBIA-I
are very efficient in dynamic maintenance of approximations of
DqI-DTRS with the sequential and batch insertion of objects.
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Table 9
Comparisons of computational time about the static algorithm and incremental deletion algorithms of DqI-DTRS in deleting objects.
DR (%) Che. Mus. Nur. Let. Def. Ban.

SA-I ISDA-I IBDA-I SA-I ISDA-I IBDA-I SA-I ISDA-I IBDA-I SA-I ISDA-I IBDA-I SA-I ISDA-I IBDA-I SA-I ISDA-I IBDA-I

5 2.470 0.073 0.034 6.829 0.245 0.132 38.829 0.382 0.364 129.368 5.586 0.716 88.840 4.797 1.780 195.247 13.594 3.330
10 2.014 0.114 0.053 5.841 0.466 0.255 34.094 0.810 0.636 108.622 10.640 1.172 76.262 9.844 3.154 165.216 25.734 5.119
15 1.661 0.139 0.071 4.948 0.676 0.367 29.589 1.298 0.981 90.460 15.086 1.580 64.762 14.266 4.317 135.466 38.188 6.739
20 1.360 0.169 0.089 4.062 0.890 0.469 24.989 1.734 1.260 73.768 19.159 1.960 54.887 18.531 5.370 112.481 49.562 8.197
25 1.090 0.200 0.105 3.309 1.086 0.574 20.509 2.229 1.550 59.096 22.765 2.324 46.293 21.984 6.553 92.309 59.187 9.602
30 0.840 0.233 0.126 2.638 1.234 0.687 16.549 2.650 1.765 46.109 26.202 2.644 38.949 25.609 7.447 80.606 67.562 10.847
35 0.636 0.252 0.140 2.007 1.366 0.783 12.753 3.034 1.941 34.893 29.130 2.928 32.652 28.625 8.485 65.747 74.906 11.993
40 0.440 0.269 0.153 1.438 1.489 0.856 9.253 3.510 2.117 25.619 31.763 3.189 27.418 31.453 9.422 53.325 81.484 12.995
45 0.285 0.280 0.163 0.909 1.609 0.912 5.869 3.913 2.292 17.499 34.177 3.431 22.918 33.703 10.085 43.184 87.797 13.869
50 0.150 0.288 0.173 0.420 1.705 0.962 2.649 4.320 2.428 10.182 36.306 3.631 18.574 35.859 10.665 35.044 94.016 14.664

Fig. 2. Comparisons of runtime in static and incremental deletion algorithms of DqI-DTRS versus different deleting ratios.

In the case of deleting objects from data, the computational
efficiency of the incremental sequential and batch deletion algo-
rithms of DqI-DTRS (ISDA-I and IBDA-I) is verified by comparing
them with the static algorithm of DqI-DTRS (SA-I). Detailed ex-
perimental results are shown in Table 9, where DR denotes the
deleting ratio.

From Table 9, in comparison with SA-I , both ISDA-I and IBDA-I
reduce the runtime of computing approximations to some extent
on each data set.

First, we compare ISDA-I and SA-I to find a better way to up-
date the approximations of DqI-DTRS in the case of the sequential
deletion of objects. In the process of increasing the deleting ratio
from 5% to 30% in steps of 5%, we find that the runtime of ISDA-I
is reduced by up to 2.96%, 3.59%, 0.98%, 4.32%, 5.40% and 6.96% of
that of SA-I at inserting ratio 5%, respectively. Moreover, in the
first six experiments, the runtime of ISDA-I is always less than
that of SA-I for each data set. For data sets Che. and Nur., only
when the deleting ratio is 50%, the runtime of ISDA-I is slightly
larger than that of SA-I . For data set Mus., when the deleting ratio
greater than 40%, the runtime of ISDA-I is slightly larger than that
of SA-I . On data sets Let. and Def., when the deleting ratio is not
less than 40%, the runtime of ISDA-I is larger than that of SA-I . On
the last data set Ban., when the deleting ratio is not less than 35%,
the runtime of ISDA-I is larger than that of SA-I . Therefore, ISDA-I
is very efficient when the amount of deleted objects is small (not

more than 35% to 40% of the original data) based on the above
analysis.

Then we compare IBDA-I , ISDA-I and SA-I to find a better way
to update the approximations of DqI-DTRS in the case of the batch
deletion of objects. In the ten experiments of the six data sets,
the number of times that IBDA-I performs better than SA-I is 9,
8, 10, 10, 10 and 10, respectively. On Che., only when the deleting
ratio is 50%, the runtime of IBDA-I is larger than that of SA-I .
On Mus., the runtime of IBDA-I is slightly larger than that of SA-
I at the deleting ratio 45% and the runtime of IBDA-I is larger
than that of SA-I at the deleting ratio 50%. On the six data sets,
the runtime of IBDA-I is reduced by up to 1.38%, 1.93%, 0.94%,
0.55%, 2.00%, 1.71% of the time of SA-I at the deleting ratio 5%,
respectively. Meanwhile, at each deleting ratio on each data set,
the computation time of IBDA-I is less than that of ISDA-I . On the
six data sets, the runtime of IBDA-I is reduced by up to 46.49%,
52.70%, 56.20%, 10.00%, 28.98%, 15.60% of the time of ISDA-I at
the corresponding deleting ratios 10%, 20%, 50%, 50%, 20%, 50%,
respectively. So our optimal choice is IBDA-I for calculating the
approximations of DqI-DTRS in dynamic data sets with the batch
deletion of objects.

More intuitive comparisons are shown in Fig. 2. Fig. 2 depicts
the detailed changes of the runtime of static and incremental
deletion algorithms of DqI-DTRS (SA-I , ISDA-I , IBDA-I) with the
increase of deleting ratios. We find that on each data set with
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Table 10
Comparisons of computational time about the static algorithm and incremental insertion algorithms of DqII-DTRS in inserting objects.
IR (%) Che. Mus. Nur. Let. Def. Ban.

SA-II ISIA-II IBIA-II SA-II ISIA-II IBIA-II SA-II ISIA-II IBIA-II SA-II ISIA-II IBIA-II SA-II ISIA-II IBIA-II SA-II ISIA-II IBIA-II

10 0.076 0.020 0.028 0.304 0.020 0.032 0.780 0.043 0.076 12.721 0.627 0.600 19.940 0.672 1.252 41.448 1.891 1.794
20 0.166 0.030 0.035 0.640 0.070 0.077 1.660 0.113 0.169 20.836 1.046 0.940 24.330 1.609 2.145 51.604 4.453 4.165
30 0.266 0.043 0.044 1.060 0.132 0.098 2.650 0.197 0.231 30.418 1.889 1.531 29.674 3.203 3.127 64.026 7.703 6.730
40 0.385 0.059 0.053 1.540 0.204 0.152 3.700 0.323 0.304 41.520 2.975 2.727 35.924 5.219 4.609 79.182 12.500 9.385
50 0.526 0.064 0.061 2.060 0.292 0.268 4.800 0.497 0.441 54.334 4.357 4.052 43.283 8.500 5.853 96.698 19.219 12.021
60 0.685 0.080 0.075 2.660 0.440 0.381 6.060 0.693 0.674 68.849 6.037 5.165 51.846 12.156 7.156 117.182 29.032 15.335
70 0.866 0.090 0.082 3.300 0.646 0.567 7.470 0.913 0.853 85.289 7.840 6.192 61.705 17.187 8.584 142.635 44.000 18.423
80 1.066 0.104 0.095 4.033 0.860 0.768 8.865 1.268 1.096 104.005 10.063 7.279 72.908 22.859 10.069 169.744 61.891 21.994
90 1.296 0.110 0.101 4.813 1.100 0.960 10.324 1.623 1.368 124.941 12.662 8.417 85.486 30.187 11.860 199.666 79.641 25.808

100 1.540 0.124 0.117 5.734 1.451 1.103 11.830 2.170 1.602 148.041 15.648 9.644 99.596 38.140 13.871 234.448 101.344 29.995

Fig. 3. Comparisons of runtime in static and incremental insertion algorithms of DqII-DTRS versus different inserting ratios.

the increase of deleting ratios, the computational time of SA-
I decreases rapidly, while that of ISDA-I and IBDA-I increases
slowly. Moreover, IBDA-I changes more smoothly and slowly
than ISDA-I . So the proposed incremental deletion algorithms
ISDA-I and IBDA-I are relatively stable. Therefore, ISDA-I is very
efficient in dynamic maintenance of approximations of DqI-DTRS
with the sequential deletion of objects when the deleting ratio
is small and IBDA-I is very efficient in dynamic maintenance of
approximations of DqI-DTRS in dynamic large data sets with the
batch deletion of objects.

6.3. Comparisons of static and incremental algorithms of DqII-DTRS
in decision systems with the variation of objects

In order to verify the computational efficiency of the incre-
mental insertion and deletion algorithms of DqII-DTRS, we com-
pare the incremental sequential and batch insertion algorithms
of DqII-DTRS (ISIA-II and IBIA-II) with the static algorithm of
DqII-DTRS (SA-II) in the case of inserting objects into data, and
compare incremental sequential and batch deletion algorithms
of DqII-DTRS (ISDA-II and IBDA-II) with the static algorithm of
DqII-DTRS (SA-II) in the case of deleting objects from data, re-
spectively. Detailed experimental results about the insertion case
are shown in Table 10 and Fig. 3, and the experimental results
about the deletion case are shown in Table 11 and Fig. 4.

From Table 10, in comparison with SA-II , both ISIA-II and IBIA-
II greatly reduce the runtime of computing approximations for
each data set.

First, we compare ISIA-II and SA-II . On data set Che., the
runtime of ISIA-II shows a reduced by up to 8.05% of the time of
SA-II at inserting ratio 100%. On the remaining five data sets, the
runtime of ISIA-II is reduced by up to 6.58%, 5.51%, 4.93%, 3.37%
and 4.56% of that of SA-II at inserting ratio 10%, respectively. In
ten experiments of the six data sets, the runtime of ISIA-II is
reduced to 13.64%, 16.30%, 11.09%, 7.97%, 21.12% and 23.61% on
average of that of SA-II , respectively. So ISIA-II updates knowl-
edge faster than SA-II in dynamic data sets with the sequential
insertion of objects.

Then we compare IBIA-II , ISIA-II and SA-II . At each inserting
ratio on each data set, the computational time of IBIA-II is always
less than that of SA-II . On the six data sets, the runtime of IBIA-II
is reduced by up to 7.60%, 9.25%, 8.22%, 4.51%, 6.28% and 4.33% of
the time of SA-II at the corresponding inserting ratio 100%, 30%,
40%, 20%, 10%, 10%, respectively. In the ten experiments of the
above six data sets, the number of times that IBIA-II performs
better than ISIA-II is 7, 8, 7, 10, 8 and 10, respectively. On Che.,
Mus. and Nur., IBIA-II performs better than ISIA-II and on Let.,
Def. and Ban., the performance of IBIA-II is far better than that of
ISIA-II . So in dynamic data sets with the batch insertion of objects,
IBIA-II can help us to update the approximations of DqII-DTRS
quickly.
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Table 11
Comparisons of computational time about the static algorithm and incremental deletion algorithms of DqII-DTRS in deleting objects.
DR (%) Che. Mus. Nur. Let. Def. Ban.

SA-II ISDA-II IBDA-II SA-II ISDA-II IBDA-II SA-II ISDA-II IBDA-II SA-II ISDA-II IBDA-II SA-II ISDA-II IBDA-II SA-II ISDA-II IBDA-II

5 1.384 0.027 0.025 5.150 0.332 0.108 10.920 0.114 0.111 131.233 1.020 0.705 87.505 5.281 1.967 238.041 16.016 3.047
10 1.160 0.056 0.040 4.334 0.519 0.194 9.520 0.235 0.201 110.528 1.859 1.125 74.880 11.140 3.455 208.151 30.157 5.202
15 0.950 0.079 0.053 3.600 0.688 0.284 8.163 0.356 0.307 90.866 2.486 1.504 63.037 16.172 4.498 181.791 44.813 6.849
20 0.770 0.100 0.075 2.960 0.865 0.365 6.850 0.469 0.431 73.522 3.047 1.855 52.896 21.093 5.254 158.698 58.156 8.300
25 0.613 0.119 0.094 2.360 1.008 0.432 5.570 0.583 0.533 58.770 3.541 2.183 44.146 24.828 5.970 132.885 69.516 9.640
30 0.470 0.136 0.113 1.820 1.125 0.502 4.424 0.692 0.628 45.789 3.983 2.478 36.755 28.843 6.646 109.338 79.078 10.880
35 0.349 0.146 0.131 1.340 1.215 0.566 3.340 0.790 0.719 34.624 4.374 2.763 30.302 31.968 7.248 88.713 87.391 12.001
40 0.240 0.171 0.149 0.930 1.305 0.626 2.385 0.890 0.818 25.011 4.764 3.002 24.709 34.906 7.818 71.885 94.672 13.011
45 0.150 0.185 0.172 0.558 1.385 0.676 1.470 0.990 0.894 16.793 5.020 3.223 20.255 37.062 8.337 56.807 101.672 13.886
50 0.070 0.205 0.195 0.250 1.448 0.721 0.690 1.090 1.004 10.019 5.283 3.403 16.709 39.093 8.791 44.667 108.781 14.700

Fig. 4. Comparisons of runtime in static and incremental deletion algorithms of DqII-DTRS versus different deleting ratios.

Fig. 3 depicts intuitively the detailed changes of the runtime of
SA-II , ISIA-II and IBIA-II with the increase of inserting ratios. It is
obvious that at each experiment of each data set, the computation
speed of ISIA-II and IBIA-II is faster than that of SA-II . More-
over, the computational time of SA-II increases sharply with the
increase of inserting ratios for each data set, while that of ISIA-
II and IBIA-II increases more slowly. Moreover, IBIA-II performs
better than ISIA-II especially in large data sets.

Based on the analysis results of Table 10 and Fig. 3, we obtain
that ISIA-II and IBIA-II are very efficient in dynamic maintenance
of approximations for data sets with the sequential insertion of
objects and the batch insertion of objects, respectively.

From Table 11, in comparison with SA-II , both ISDA-II and
IBDA-II reduce the runtime of computing approximations to some
extent for each data set.

First, we compare ISDA-II and SA-II . On six data sets, the
runtime of ISDA-II is reduced by up to 1.95% , 6.45%, 1.04%, 0.78%,
6.04% and 6.73% of that of SA-II at deleting ratio 5%, respectively.
On data set Let., ISDA-II always performs better than SA-II in
ten experiments. On data sets Che. and Nur., only when the
deleting ratio close to or equal to 50%, the performance of ISDA-
II is slightly weaker than that of SA-II . On data set Mus., when
the deleting ratio is not less than 40%, the runtime of ISDA-II is
slightly larger than that of SA-II . On data sets Def. and Ban., when
the deleting ratio is not less than 40%, SA-II performs better than

ISDA-II . In ten experiments, the runtime of ISDA-II is reduced to
23.69%, 37.42%, 18.79%, 13.84%, 36.86% and 43.67% on average of
that of SA-II on six data sets, respectively. So ISDA-II performs
better than SA-II for calculating the approximations of DqII-DTRS
in dynamic data sets with the sequential deletion of small objects
(not more than 40% to 50% of the original data).

Then we compare IBDA-II , ISDA-II and SA-II . In the ten experi-
ments of the above six data sets, the number of times that IBDA-II
performs better than SA-II is 8, 8, 9, 10, 10 and 10, respectively.
On six data sets, the runtime of ISDA-II is reduced to 19.95%,
22.78%, 17.07%, 8.80%, 20.49% and 11.90% on average of that of
SA-II , respectively. In each experiment on each data set, IBDA-
III performs better than ISDA-II . On six data sets, the runtime
of IBDA-II is reduced by up to 67.09%, 32.53%, 85.53%, 60.50%,
22.40% and 13.51% of the time of ISDA-II at the corresponding
deleting ratios 15%, 5%, 10%, 15%, 40% and 50%, respectively. So
IBDA-II performs better than ISDA-II and SA-II for calculating the
approximations of DqII-DTRS in dynamic large data sets with the
batch deletion of objects.

Meanwhile, Fig. 4 depicts intuitively the changes of the run-
time of SA-II , ISDA-II and IBDA-II with the increase of deleting
ratios. We find that on each data set with the increase of deleting
ratios, the runtime of ISDA-II and IBDA-II increases slowly, while
that of SA-II decreases rapidly. So ISDA-II and IBDA-II are rela-
tively stable. Moreover, for each data set, when the deleting ratio
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Table 12
The average runtime under 25 pairs of parameters of incremental algorithms.
Runtime (s) Che. Mus. Nur. Let. Def. Ban.

ISIA-I 0.181± 0.013 1.753± 0.033 6.723± 0.236 18.440± 1.688 33.395± 2.766 87.081± 6.040
ISIA-II 0.133± 0.014 1.457± 0.034 2.186± 0.148 15.874± 1.497 38.253± 2.514 103.098± 6.476
ISDA-I 0.298± 0.015 1.711± 0.031 4.336± 0.179 36.408± 2.345 35.967± 2.964 93.828± 3.670
ISDA-II 0.214± 0.014 1.461± 0.023 1.106± 0.095 5.359± 0.785 38.989± 2.887 108.252± 6.608
IBIA-I 0.175± 0.012 1.471± 0.031 2.873± 0.166 9.425± 1.152 14.264± 1.170 31.300± 1.781
IBIA-II 0.126± 0.015 1.107± 0.027 1.601± 0.191 9.823± 1.114 14.103± 1.145 31.368± 2.073
IBDA-I 0.183± 0.015 0.973± 0.027 2.460± 0.234 3.725± 0.639 10.760± 1.072 15.416± 0.959
IBDA-II 0.204± 0.014 0.727± 0.030 1.106± 0.173 3.432± 0.612 9.087± 0.886 14.656± 1.596

Fig. 5. The runtime of incremental sequential insertion and deletion algorithms of Dq-DTRS under different parameter values on Ban.

is less than or close to 40% or 50%, the runtime of ISDA-II is less
than or approximately equal to that of SA-II . The computational
time of IBDA-II is always less than that of ISDA-II and SA-II in
dynamic large data sets.

Based on the analysis results of Table 11 and Fig. 4, we obtain
that ISDA-II is very efficient in dynamic maintenance of approx-
imations of DqII-DTRS with the sequential deletion of objects
when the deleting ratio is small (less than or close to 40% or
50% of the original data) and IBDA-II is very efficient in dynamic
maintenance of approximations of DqII-DTRS in dynamic large
data sets with the batch deletion of objects.

6.4. The influence of parameters on the performances of incremental
insertion and deletion algorithms of Dq-DTRS

In the last experiment of the above comparative experiments
(IR = 100% and DR = 50%), we set the value of β to vary
from 0.1 to 0.5 in steps of 0.1, k to vary from 1 to 5 in steps
of 1 and α to vary from 0.6 to 1.0 in steps of 0.1. The average
runtime under 25 pairs of parameters of incremental insertion
and deletion algorithms of DqI-DTRS and DqII-DTRS is shown in
Table 12.

From Table 12, we can see that under 25 pairs of parame-
ter values, the range of runtime of each incremental algorithms
changes little in terms of median. For example, even on the
large data Ban. with samples 45211, for ISIA-I , there is a change
of 6.040 s in terms of median 87.081 s; for ISIA-II , there is a
change of 6.476 s in terms of median 103.098 s; for ISDA-II ,

there is a change of 6.608 s in terms of median 108.252 s. When
these incremental algorithms (ISIA-I , ISIA-II , ISDA-I , ISDA-II , IBIA-
I , IBIA-II ) run in 30 s, their variations are about 2–3 s. Therefore,
different values of parameters have little effect on the overall
efficiency of the incremental insertion and deletion algorithms.
This is consistent with Chen et al.’s research results [26,28] that
when inserting objects into or deleting objects from data sets,
the incremental algorithms has essentially the same runtime
under different error tolerance parameters, with only a few small
fluctuations.

Taking a large data set Ban. as an example, we give more
intuitive results in Figs. 5–6. As can be seen from Figs. 5–6, the
runtime of these incremental algorithms is basically in a contour
plane under 25 pairs of parameter values. From Table 12 and
Figs. 5–6, We can see that the proposed incremental sequential
insertion, sequential deletion, batch insertion and batch deletion
algorithms of Dq-DTRS is stable.

6.5. Experimental summary

By comparing static and incremental algorithms of DqI-DTRS
and DqII-DTRS in Sections 6.2 and 6.3, we have obtained the
following conclusions: (1) The proposed incremental sequential
and batch insertion algorithms of Dq-DTRS models (ISIA-I , ISIA-
II , IBIA-I and IBIA-II) are feasible and very efficient in dynamic
maintenance of approximations for data sets with the sequential
and batch insertion of objects. Especially when a large number of
objects are inserted into data sets, these algorithms can help us
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Fig. 6. The runtime of incremental batch insertion and deletion algorithms of Dq-DTRS under different parameter values on Ban.

update knowledge quickly. (2) The proposed incremental sequen-
tial and batch deletion algorithms of Dq-DTRS models (ISDA-I ,
ISDA-II , IBDA-I and IBDA-II) are feasible and efficient in dynamic
maintenance of approximations for data sets with the sequential
and batch deletion of objects. In particular, when relatively small
objects are deleted from large data sets, these algorithms are
very efficiency. (3) On small data sets such as Che. and Mus.,
incremental sequential insertion and deletion algorithms (ISIA-I ,
ISIA-II , ISDA-I and ISDA-II) have similar computational perfor-
mance over the corresponding incremental batch algorithms in
data sets with the batch variation of objects. (4) On large data sets
such as Def. and Ban., incremental batch insertion and deletion
algorithms (IBIA-I , IBIA-II , IBDA-I and IBDA-II) have absolute
computational advantages over the corresponding incremental
sequential algorithms in data sets with the batch variation of
many objects.

7. Conclusion and future work

The development of information technology makes the scale
of data larger and the real-time update speed faster. In real life,
dynamic data of different types is universal. Making full use of the
correlation of real time data and priori knowledge derived from
previous data can more efficiently discover knowledge and rules
from current data. In this paper, we first analyze systematically
the variations of decision classes, equivalence classes, conditional
probability, external grade and internal grade with the sequential
and batch variations of objects. Then we propose incremental
methods to update quickly approximations of Dq-DTRS in dy-
namic decision information systems with the variation of objects
and design the corresponding incremental algorithms. The ex-
perimental comparisons show that our incremental approaches
are feasible, stable and efficient in calculating approximation sets,
which can help people express knowledge, extract rules and make
sound decisions. Based on the above results, we will further study
the incremental feature selection of the Dq-DTRS model and the
dynamic approximation updating of Dq-DTRS in fuzzy dynamic
data sets.
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